

SMART SOLUTIONS. HEALTHY RESULTS.

Sacroiliac Joint Syndrome

Diagnosis/Condition:	Sacroiliac Joint (SIJ) Syndrome SIJ sprain/strain SIJ dysfunction
Discipline:	DC
ICD-10 Codes:	S33.6XXA; M99.04
Origination Date:	2006
Review/Revised Date:	10/2024
Next Review Date:	10/2026

Sacroiliac joint dysfunction is a term used to describe the pain of the Sacroiliac joint. A variety of conditions can cause SIJ dysfunction including degenerative and inflammatory arthritis, trauma, prior lumbosacral fusion, hip arthritis, limb length inequality, infections, and neoplasia.¹ The SIJ is a complex structure; it is a true diarthrodial joint with unique characteristics not typically found in other diarthrodial joints. It differs with others in that it has fibrocartilage in addition to hyaline cartilage, with matching articulate surfaces between the sacrum and ilium separated by synovial fluid and surrounded by a fibrous capsule.²

While the incidence of lower back pain in humans parallels the incidence of the common cold, several attempts have been made to establish the prevalence of SIJ syndrome in persons with back pain. Goldthwait and Osgood first discussed the possibility that SIJ injury could cause low back pain as early as 1905. The SIJ has been found to be the primary culprit for lower back pain (LBP), but it is still overlooked and treated as LBP.³ The literature reports that the SIJ is the pain origin in as many as 30% of patients presenting with low back pain.⁴ Another study stated Sacroiliac joint syndrome is a significant source of pain in 13% to 30% of people with low back pain.⁵ SIJ dysfunction and degeneration is common after spinal fusion,⁶ and reported in up to 40% in some studies.⁷

Predisposing factors for SIJ pain include true and apparent leg length discrepancy, older age, inflammatory arthritis, previous spine surgery, pregnancy, athletic injuries, and trauma. Females are more likely to present with SIJ dysfunction than males.⁸

The main function within the joint is to provide shock absorption for the spine and to transmit forces between the upper body and the lower limbs. Motion of the SIJ is limited to minute amounts of rotation and of translation, suggesting that clinical methods utilizing palpation for diagnosing SIJ pathology may have limited clinical utility.⁹ Ambulation is heavily impacted by the SI joint, as this is the only orthopedic joint connecting the upper body to our lower body.

Because studies have documented that motion does occur, slightly subluxed and even locked positions can occur. Too much movement (hypermobility or instability) the pain is typically felt in the lower back and/or hip and may radiate into the groin area. Too little movement (hypomobility or fixation) the pain is typically felt on one side of the lower back or buttocks and can radiate down the leg. The pain usually remains above the knee, but at times pain can extend to the ankle or foot and is similar to sciatica.

Muscles and ligaments surround and attach to the SI joint in the front and back, primarily on the ilial or sacral surfaces. These can all be a source of pain and inflammation if the SI joint is dysfunctional. It is highly dependent on its strong ligamentous structure for support and stability. The ligamentous structures offer resistance to shear and loading. The deep anterior, posterior, and interosseous sacroiliac ligaments resist the load of the sacrum relative to the ilium. Superficial ligaments (e.g., the sacrotuberous ligament) react to dynamic motions (such as straight-leg raising during physical motion). The long dorsal sacroiliac ligament can become stretched in periods of increased lumbar lordosis (e.g., during pregnancy). The most common disrupted and/or torn ligaments are the iliolumbar ligament and the posterior sacroiliac ligament.

Sacroiliitis is not the same as SI joint dysfunction. Sacroiliitis is specific to inflammatory processes present in the SI joint and the pain sensed is a direct result of those inflammatory processes.

Subjective Findings and History

- Symptoms of SIJ dysfunction mimic those of other lower back disorders and include low back, hip, groin, and radiating symptoms of leg pain and paresthesia's.
- Macro trauma: Evidence of trauma adequate to support disruption of SI soft tissues, e.g., a fall, lifting, sudden step, unguarded movement. Actual SI sprain is a rare entity.
- Micro trauma: Repetitive traumatic events not singularly capable of producing injury, short hamstring muscles, asymmetrical movement.
- The location of pain upon presentation can be unilateral or bilateral but is most often not midline. Pain may radiate to the groin, anterior thigh or even down the leg presenting a pain pattern similar to sciatica.
- Paroxysmal character of the pain.
- Pain in lower abdomen and groin due to tension in iliacus muscle is a common feature.
- Pain which comes on after remaining for some time in one position, but which disappears on active movement.
- Pain increased with weight bearing, standing from seated position, or climbing stairs and decreased with recumbency.
- Pregnancy: Hormonal changes which occur during pregnancy and produce relaxation of pelvic ligaments may influence the SIJ for up to 12 months.
- History of lumbar/lumbosacral fusion have an increased incidence of SIJ pain and degeneration¹⁰

- History of leg crossing sitting. The elongation of the piriformis muscle bilaterally by crossing the legs may be functional in the build-up of active or passive tension in the sacroiliac joint.¹¹

Objective Findings

- Provocative orthopedic tests such as Double SLR, Goldthwaite's, homolateral stabilization, Smith Peterson, SLR, Yeoman's, Belt.
- The diagnostic performance of most clinical tests was poor with low specificity (0.03–0.95), sensitivity (0.08–0.90), and positive likelihood ratio (0.3–1.4), when used in isolation. The thigh thrust is the most sensitive test (0.88), the distraction test is most specific (0.81), and the compression test has the strongest positive likelihood ratio (2.20). Three or more positive pain provocation tests showed optimal sensitivity, specificity, and positive likelihood ratios.¹²
- Hip Abduction and External Rotation (HABER) test can reproduce familiar pain in SIJ-positive LBP individuals and has moderate levels of sensitivity and specificity for identifying SIJ-positive LBP individuals.¹³
- Palpation:
 - Motion palpation (Gillet test).
 - Pain distribution and palpable tenderness caudal to the posterior superior iliac spine are fairly reliable indicators that the pain generator is the SI joint.¹⁴
- Shortened hamstring muscles, weak gluteal muscles.
- Evaluating kinetic chain and posture may reveal antalgia, shift of weight to unaffected SIJ, and guarded gait.
- Limp on affected side due to fatigue or pain.
- Nerve compression signs are likely negative.
- Decrease/loss of normal spinal ROM, esp. sagittal.
- Sensory: possible minor hyperesthesia.
- Leg length inequality.
- Diagnostic imaging: Imaging is usually not helpful, but depending on age and history of prior episodes, degenerative or inflammatory changes may be apparent (see CHP radiographic guidelines).
- The most definitive evaluation is image-guided injection of anesthetic solutions into the joint which is diagnostic if there is at least 75% symptom relief acutely.¹⁵
- SIJ block injection is considered a “gold standard” diagnostic test of SIJ pain.
- Absence of neurological deficit/nerve root tension signs.

Assessment

- In cases of low back pain, it is important to differentiate the pain generator and indicate the specific anatomic structures involved, e.g., lumbar disc syndrome vs SIJ syndrome.
- Rule out inflammatory arthropathy, lab testing, MRI (bone marrow edema), e.g., ankylosing spondylitis, Reiter's syndrome.
- Orthopedic/neurologic examination directed at differentiating neurogenic from sclerogenic pain.

The choice of treatment is dependent on whether the SI joint is hypomobile or hypermobile. A hypomobile or fixated joint responds best to mobilization and a hypermobile joint responds to stabilization treatments.

Plan

Lifestyle Changes:

- Limit bed rest.
- Activities/work restrictions, if appropriate.
- Address precipitating factors: e.g., wallet in back pocket.

Supplements and Nutrients:

- Supplementation to control pain and inflammation.

Pharmaceuticals (OTC):

- NSAID to control pain and inflammation.

Immobilization, Bracing, Taping:

- A pelvic belt is most effective in a high position.¹⁶
- Braces/supports, trochanter belt for hypermobility, heel lift (leg length inequality), and orthotics.

Physical Modalities (Western):

- A 2023 study concluded that physical therapy-based management approaches ranging from combined exercise therapy to MET and K-taping were significantly more effective than traditional approaches.¹⁷
- Ice/heat application at home.

Movement and Exercise:

- Exercise therapy appear to be effective in reducing pain and disability in patients with SIJD.¹⁸
- Motor control exercises in combination with other musculoskeletal therapies revealed a significant and clinically relevant decrease in pain and disability at short-term, especially in peripartum period.¹⁹
- Active exercise/stretches for mobility, endurance, strength, and stability.
- Walking.

Soft Tissue Therapies:

- Myofascial therapy.

Manual Adjustments/Manipulation:

- Manipulation of SIJ hypomobility and other areas of joint dysfunction.²⁰
- A study showed that sacroiliac joint manipulation can influence peak pressure distribution between feet.²¹

- A single session of SIJ and lumbar manipulation was more effective for improving functional disability than SIJ manipulation alone in patients with SIJ syndrome.²²
- A 2017 study revealed that manipulation to be the most effective in reducing pain and disability associated with SIJD.²³
- Structural movement of the sacroiliac joint may be maximized with manual therapy.²⁴

Acupuncture (excluding pharmocoacupuncture):

- A 2022 study showed that Acupuncture may have therapeutic advantages in improving sacroiliac joint malposition.²⁵

Injection Therapies:

- A study showed a proportion of patients with symptomatic SI joint instability as an etiology of low back pain can have clinically meaningful functional gains with prolotherapy treatment.²⁶
- Fluoroscopically guided injections into the joint have been found to be helpful for diagnostic and therapeutic purposes.²⁷
- In those who fail to experience sustained relief from SIJ injections, radiofrequency denervation may provide significant relief lasting up to 1 year.²⁸

Length of Treatment

- Conservative therapy: 1-2 months with emphasis on active care, early.
- Risk factors for chronicity: co-morbidity (degenerative joint disease, hypermobility, pelvic deformity).
- Lack of improvement: consider a fixated pubic symphysis.

Referral Criteria

Referral to an appropriate specialist may be appropriate after 1-2 months of care without symptomatic or functional improvement or upon appearance of neurologic deficits.

UpToDate: Subacute and chronic low back pain: Nonsurgical interventional treatment (Accessed 2024)

Clinical Pathway Feedback

CHP desires to keep our clinical pathways customarily updated. If you wish to provide additional input, please use the e-mail address listed below and identify which clinical pathway you are referencing. Thank you for taking the time to give us your comments.

Clinical Services Department: cs@chpgroup.com

Disclaimer Notice

The CHP Group (CHP) Clinical Pathways are a resource to assist clinicians and are not intended to be nor should they be construed/used as medical advice. The pathways contain information that may be helpful for clinicians and their patients to make informed clinical decisions, but they cannot account for all clinical circumstances. Each patient presents with specific clinical

circumstances and values requiring individualized care which may warrant adaptation from the pathway. Treatment decisions are made collaboratively by patients and their practitioner after an assessment of the clinical condition, consideration of options for treatment, any material risk, and an opportunity for the patient to ask any questions.

CHP makes no representation and accepts no liability with respect to the content of any external information cited or relied upon in the pathways. The presence of a particular procedure or treatment modality in a clinical pathway does not constitute a representation or warranty that this service is covered by a patient's benefit plan. The patient's benefit plan determines coverage.

¹ Shaffrey C I, Smith J S, Stabilization of the sacroiliac joint. *Neurosurg Focus*. 2013 Jul;35(2 Suppl):Editorial. doi: 10.3171/2013.V2.FOCUS13273.

² Forst S L, Wheeler M T, Fortin J D, Vilensky J A, The sacroiliac joint: anatomy, physiology and clinical significance. *Pain Physician*. 2006 Jan;9(1):61-7.

³ Nejati P, Safarcherati A, Karimi F. Effectiveness of Exercise Therapy and Manipulation on Sacroiliac Joint Dysfunction: A Randomized Controlled Trial. *Pain Physician*. 2019 Jan;22(1):53-61. PMID: 30700068.

⁴ Rashbaum RF1, Ohnmeiss DD, Lindley EM, Kitchel SH, Patel VV. Sacroiliac Joint Pain and Its Treatment. *Clin Spine Surg*. 2016 Mar;29(2):42-8. doi: 10.1097/BSD.0000000000000359

⁵ Sabrina S, Farooqui S, Khan MA, Khan AA, Khan FA. Effectiveness of Evidence Based Physical Therapy Management Approaches in Sacroiliac Joint Dysfunction: A Meta-analysis. *J Coll Physicians Surg Pak*. 2023 May;33(5):572-577. doi: 10.29271/jcpsp.2023.05.572.

⁶ Kee-Yong Ha 1, Jun-Seok Lee, Ki-Won Kim, Degeneration of sacroiliac joint after instrumented lumbar or lumbosacral fusion: a prospective cohort study over five-year follow-up, *Spine (Phila Pa 1976)* . 2008 May 15;33(11):1192-8.

⁷ Sun HH, Zhuang SY , Hong X , Xie XH , Zhu L , Wu XTThe efficacy and safety of using cooled radiofrequency in treating chronic sacroiliac joint pain: A PRISMA-compliant meta-analysis. *Medicine*, 01 Feb 2018, 97(6):e9809.

⁸ Newman DP, McLean BC, Scozzafava AM. Evaluation and Management of Sacroiliac Dysfunction Utilizing an Evidence-Based Algorithmic Approach: A Case Study. *Cureus*. 2020 Aug 20;12(8):e9907. doi: 10.7759/cureus.9907. PMID: 32968570; PMCID: PMC7505610.

⁹ Goode A, Hegedus E J, Sizer P, Brismee J-M, Linberg A, Cook C E, Three-dimensional movements of the sacroiliac joint: a systematic review of the literature and assessment of clinical utility. *J Man Manip Ther*. 2008;16(1):25-38. doi: 10.1179/106698108790818639.

¹⁰ Yu Chao Lee, Robert Lee, Clare Harman, The incidence of new onset sacroiliac joint pain following lumbar fusion. *Journal of Spine Surgery*, Vol 5, No 3 (September 29, 2019).

¹¹ Snijders C. J. Hermans P. F. Kleinrensink G. J. Functional aspects of cross-legged sitting with special attention to piriformis muscles and sacroiliac joints. *CLINICAL BIOMECHANICS*. 2006 FEB, 21, pp 116-21.

¹² Sivayogam A; Banerjee A. Diagnostic performance of clinical tests for sacroiliac joint pain. *PHYSICAL THERAPY REVIEWS*, Dec 1, 2011; 16(6): 462-7.

¹³ Adhia D, Tumilty S, Mani R, Milosavljevic S, Bussey MD. Can hip abduction and external rotation discriminate sacroiliac joint pain? *Man Ther*. 2016 Feb;21:191-7. doi: 10.1016/j.math.2015.08.002. Epub 2015 Aug 12.

¹⁴ Liebenson C The relationship of the sacroiliac joint, stabilization musculature, and lumbo-pelvic instability. *Journal of Bodywork and Movement Therapies* 2004 Jan;8(1):43-5

¹⁵ Rashbaum RF1, Ohnmeiss DD, Lindley EM, Kitchel SH, Patel VV. Sacroiliac Joint Pain and Its Treatment. *Clin Spine Surg*. 2016 Mar;29(2):42-8. doi: 10.1097/BSD.0000000000000359.

¹⁶ Damen L, Spoor C, Snijders C, Stam H Does a pelvic belt influence sacroiliac joint laxity? *Clinical Biomechanics* 2002 Aug;17(7):495-8

¹⁷ Sabrina S, Farooqui S, Abid Khan M, Khan A A, Khan F A. Effectiveness of Evidence Based Physical Therapy Management Approaches in Sacroiliac Joint Dysfunction: A Meta-analysis. *J Coll Physicians Surg Pak*. 2023 May;33(5):572-577. doi: 10.29271/jcpsp.2023.05.572.

¹⁸ Nejati P, Safarcherati A, Karimi F. Effectiveness of Exercise Therapy and Manipulation on Sacroiliac Joint Dysfunction: A Randomized Controlled Trial. *Pain Physician*. 2019 Jan;22(1):53-61. PMID: 30700068.

¹⁹ Mapinduzi J, Ndacyisaba G, Mahaudens P, Hidalgo B, Effectiveness of motor control exercises versus other musculoskeletal therapies in patients with pelvic girdle pain of sacroiliac joint origin: A systematic review with meta-analysis of randomized controlled trials, *J Back Musculoskelet Rehabil*. 2022;35(4):713-728. doi: 10.3233/BMR-210108.

²⁰ Liebenson C The relationship of the sacroiliac joint, stabilization musculature, and lumbo-pelvic instability. *Journal of Bodywork and Movement Therapies* 2004 Jan;8(1):43-5

²¹ Grassi D; de Souza MZ; Ferrareto SB; Montebelo MI. Immediate and lasting improvements in weight distribution seen in baropodometry following a high-velocity, low-amplitude thrust manipulation of the sacroiliac joint. *MANUAL THERAPY*, Oct 1, 2011; 16(5): 495-500.

²² Kamali F, Shokri E. The effect of two manipulative therapy techniques and their outcomes in patients with sacroiliac joint syndrome. *J Bodyw Mov Ther*. 2012 Jan;16(1):29-35. doi: 10.1016/j.jbmt.2011.02002. Epub 2011 Mar 11.

²³ Al-Subahi M, Alayat M, Abdullah Alshehri M, et al, The effectiveness of physiotherapy interventions for sacroiliac joint dysfunction: a systematic review. *J Phys Ther Sci*. 2017;29(9):1689-1694.

²⁴ Miles D, Bishop M, Use of Manual Therapy for Posterior Pelvic Girdle Pain, *PM R*. 2019 Aug;11 Suppl 1:S93-S97. doi: 10.1002/pmrj.12172. Epub 2019 Jun 26.

²⁵ Liguo Liu et al, Comparison of Efficacy between Acupuncture Therapies in Improving Sacroiliac Joint Malposition: A Systematic Review and Meta-Analysis, *Biomed Res Int*. 2022 Jan 11:2022:9485056. doi: 10.1155/2022/9485056.

²⁶ Hoffman MD, Agnish V. Functional outcome from sacroiliac joint prolotherapy in patients with sacroiliac joint instability. *Complement Ther Med*. 2018 Apr;37:64-68. doi: 10.1016/j.ctim.2018.01.014. Epub 2018 Feb 8. PMID: 29609940.

²⁷ [Brian S Foley, Ralph M Buschbacher](#), Sacroiliac joint pain: anatomy, biomechanics, diagnosis, and treatment. *Am J Phys Med Rehabil*. 2006 Dec;85(12):997-1006.

²⁸ Cohen S P, Chen Y, Neufeld N, Sacroiliac joint pain: a comprehensive review of epidemiology, diagnosis and treatment. *Neurother*. 2013 Jan;13(1):99-116. doi: 10.1586/ern.12.148.