

Hyperlipidemia or Dyslipidemia

Diagnosis/Condition:

Hypercholesterolemia, pure
Hyperlipidemia, mixed
Hypertriglyceridemia
Disorder of lipid metabolism,
unspecified

Discipline:

ND, LAc

ICD-10 Codes:

E78.0, E78.1, E78.2, E78.9

Origination Date:

2010

Review/Revised Date:

07/2024

Next Review Date:

07/2026

Hyperlipidemia is defined as the increased levels of lipids (fats) in the blood, including cholesterol and triglycerides. This condition can significantly increase the risk of coronary artery disease (CAD) or atherosclerosis. In the U.S., Heart Disease is the #1 cause of death, accounting for 25% of mortalities (~700,000/year).¹ Of the numerous types of Heart Disease, CAD is the most common, accounting for ~50% of Heart Disease deaths (~375,000/yr). Despite being a modifiable risk factor, hyperlipidemia remains one of the most prevalent contributors to CAD.^{2,3} U.S. data estimates that ~34% of U.S. adults have elevated low-density lipoprotein (LDL) cholesterol and only ~33% have this condition reduced to a safe level. First lines of defense are lifestyle modifications, e.g., exercise, diet, and smoking cessation. Complementary and Integrative Health providers encounter patients with these risk factors, which are a priority public health issue. These encounters are an important opportunity to promote evidence-based health promotion and chronic disease prevention strategies.⁴

The chart below summarizes lipid levels according to low-very high values for screening.⁵ Anything above optimal/desirable should be treated appropriately to reduce cardiovascular risks. Note: High HDL is considered a negative risk factor (removes a risk factor).

	Low mg/dL (mmol/L)	Optimal/Desirable mg/dL (mmol/L)	Borderline High mg/dL (mmol/L)	High mg/dL (mmol/L)	Very High mg/dL (mmol/L)
Total Cholesterol (TC)	N/A	Less than 200 (5.17)	200 to 239 (5.17 to 6.18)	≥240 (6.20)	N/A
Low-density lipoprotein (LDL)	N/A	Less than 100- 129 (2.58 to 3.33)/ If have CHD and risk factors - 70 to 80 (1.81 to 2.07)	130 - 159 (3.36 to 4.11)	160 to 189 (4.13 to 4.88)	≥190 (4.91)

High-density lipoprotein (HDL)	<40 (1.03)	40 to 60 (1.03 to 1.55)	N/A	N/A	≥ 60 or 1.55
Triglycerides		Less than 150 (1.69)	150 to 199 (1.69 to 2.25)	200 to 499 mg/dL (2.25 to 5.63)	>500 (5.65)

Total-to-HDL-cholesterol ratio is of greater predictive value than the serum total or LDL-C and should be used to guide treatment options.⁶

Numerous international clinical practice guidelines have been developed for treatment, each with variations of treatment strategies.^{7,8,9,10} A recent publication highlights a few key differences between these.¹¹ For instance, there is no consensus among these guidelines on the risk assessment tool that should be used (e.g., Framingham Risk Score) or the threshold at which to initiate treatment (i.e., statins). Similar to differences among international recommendations, the current U.S. guideline recognizes that algorithms are, at times, inadequate and that individualized care is often needed.

The most current U.S. guideline, developed by the American Heart Association and American College of Cardiology (AHA/ACC), expanded the focus from CHD only, to include atherosclerotic cardiovascular disease (ASCVD); which includes CHD, stroke and peripheral arterial disease.⁷ The general approach recommended is to discuss the risks of ASCVD before prescribing statins and to triage patients into one of four risk categories using the AHA/ACC risk calculator. Compared with the previous guideline (2013), the 2019 update suggests more attention on reducing LDL cholesterol as a treatment goal, as well as long-term monitoring of therapeutic efficacy. It is worth noting that the first line of treatment for all individuals is encouragement and recommendation of *“A heart-healthy lifestyle beginning in childhood”* and suggests screening should begin in adolescents to reduce lifetime risk for ASCVD.

Lipid Management and Treatment Goals based on ACC/AHA 2018 Guidelines			
Clinical Scenario	Statin Treatment Intensity	Goals and Follow Up	*Lifestyle Modifications recommended for all scenarios.
Very High Risk Multiple major ASCVD events or one event and other risk factors	MAX	LDL <70 or non-HDL ≥100	*Lifestyle Modifications recommended for all scenarios.
Primary Hypercholesterolemia LDL-C ≥190		LDL-C ≥100	
High Risk 10-year ASCVD risk ≥20%	HIGH	High intensity: Aim for reduction of 50% of LDL-C.	*Lifestyle Modifications recommended for all scenarios.
Stable ASCVD Clinical ASCVD without risk factors		Moderate intensity: Aim for reduction of 30-49% of LDL-C.	
Diabetes If multiple risk factors, then higher dose of statin	MODERATE		

Intermediate Risk 10-year ASCVD risk between 7.5-20%. Consider risk enhancers*		Risk Discussion	
Low Borderline Risk 10-year ASCVD risk < 7.5. Consider risk enhancers.	UNKNOWN		

Risk-enhancing Factors

- Family history of premature ASCVD (male < 55 years or female < 65 years).
- Primary hypercholesterolemia with LDL 160-189 mg/dL.
- Metabolic syndrome.
- Chronic kidney disease.
- Chronic inflammatory disorders (e.g., rheumatoid arthritis, HIV/AIDS).
- Premature menopause (< 40 years).
- Pregnancy-associated complications with higher ASCVD risk (e.g., preeclampsia).
- Non-fasting triglycerides > 175 mg/dL on at least 3 occasions.
- Biomarkers: high-sensitivity CRP > 2 mg/dL, Lp(a) > 50 mg/dL, apoB > 130 mg/dL.
- ABI (ankle brachial index) < 0.9.

Deciding Who to Treat¹⁴

Patients' cardiovascular risk should be calculated using appropriate risk models, such as the Framingham Risk Score for men and women. Patients and their providers can then decide whether a 20 to 30 percent relative risk reduction translates into an absolute risk reduction large enough to be worth the cost, burdens, and potential side effects of medical treatment. The calculator can be found here: <http://cvdrisk.nhlbi.nih.gov/calculator.asp>

Major Atherosclerotic Cardiovascular Disease (ASCVD) Risk Factors

Major Risk Factors	Additional Risk Factors	Nontraditional Risk Factors
Advancing age (Age > 65 years)	Obesity, abdominal obesity	↑ Lipoprotein (a)
Low HDL-C	Family history of (heterozygous) hyperlipidemia	↑ Clotting factors
Hypertension	↑ Small, dense LDL-C	↑ Inflammation markers (hsCRP; Lp-PLA ₂)
↑ Total serum cholesterol level	↑ Apo B	↑ Homocysteine levels
↑ Non-HDL-C	↑ LDL particle concentration	Apo E4 isoform
↑ LDL-C above 100 mg/dL despite max statin	Fasting/postprandial hypertriglyceridemia	↑ Uric acid

therapy		
Diabetes mellitus	Dyslipidemic triad	↑ TG-rich remnants
Stage 3 or 4 chronic kidney disease	PCOS	
Family History of ASCVD	Hypothyroidism	
Ischemic stroke, Symptomatic peripheral artery disease (claudication with ABI < 0.85, or previous revascularization or amputation)	Prior coronary bypass surgery or PCI outside of the above events	
ACS in last 12 months	Current smoker	
Multiple heart attacks	Congestive heart failure	

Risk categories for ASCVD are based on patient's 10-year ASCVD risk. They are now divided into **Low Risk** (<5%); **Borderline** (5-7.5%); **Intermediate** (7.5%-20%); and **High Risk** (>20%).⁷ Treatment goals vary for each Risk Category. Women and children have specific parameters and treatment goals to consider.⁷ Adults who are 40 to 75 years of age and are being evaluated for cardiovascular disease prevention should undergo 10-year atherosclerotic cardiovascular disease(ASCVD) risk estimation and those in other age categories should be evaluated based upon risk factors, with younger patients getting assessed more often.²⁰

Subjective Findings and History

- CAD or risk factors for CAD include underlying conditions, such as diabetes mellitus types 1 and 2, carotid artery disease, hyperthyroidism, liver disease, kidney disease, peripheral artery disease, and abdominal aortic aneurysm. Other risk factors include cigarette smoking, stress levels, hypertension (BP \geq 140/90 or being treated for hypertension), family history of premature CAD in a first-degree relative, male gender, and increased age.
- Several other risk factors for CAD have been suggested by epidemiologic data. These include obesity, physical inactivity, impaired fasting glucose, markers for inflammation, excess calorie consumption, excess alcohol consumption, homocysteine levels, abnormalities of thrombosis, and endothelial dysfunction.
- Use of drugs such as hormones, oral contraceptives, corticosteroids, retinoids, thiazide

- diuretics, and possibly antiviral drugs used to treat human immunodeficiency virus (HIV) infection and AIDS can cause triglyceride levels to increase.
- Genetics (familial or hereditary hyperlipidemia, familial dysbetalipoproteinemia or lipoprotein lipase deficiency and apolipoprotein CII deficiency).²¹

Objective Findings

- Generally asymptomatic.
- If presents with other risk factors (as listed above) or CAD, may include chest pain (angina), history of a myocardial infarction (MI), or a stroke.
- High lipid levels can cause fat to be deposited in the skin and tendons and forms bumps called xanthomas.
- Very high triglyceride levels can cause the liver or spleen to enlarge and may increase the risk of developing pancreatitis, which can cause severe abdominal pain and is occasionally fatal.

Assessment

- A lipid profile (LDL-C, HDL-C, Non-HDL-C, Triglycerides) is usually measured in fasting labs (12 hours) and a ten-year risk for developing CAD is determined and based on the Framingham Heart Study.²²
 - Baseline lipid panel should be done at age 20 and then every 5 years if no other risk factors (family history of high cholesterol or other risk factors, like smoking or diabetes).
 - Highly sensitive C-reactive protein (hsCRP)²³ and apolipoproteins (Lp=PLA2, Apo B and/or an apo B/apo A1 ratio calculation and evaluation).
- Coronary artery calcification measurement (scoring) in:
 - Patients who are reluctant to start a statin.
 - Patients who are reluctant to re-start a statin after stopping for statin-associated symptoms.
 - Older patients (men 50-88 years and women 60-80 years) with low burden of risk factors and question benefit of starting a statin.
 - Middle-aged adults (40-55 years) who fall in the “borderline” ASCVD risk category and have additional risk factors that increase their ASCVD risk.
- Homocysteine.
- Carotid intima media thickness.
- Cardiovascular exam.
- Peripheral vascular exam.
- Retinal exam.
- Comprehensive physical exam.

Plan

The Third Report of the Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III, or ATP III) from the National Cholesterol

Education Program (NCEP) has summarized the current recommendations for the management of high serum cholesterol.²⁴

- A 5-year clinical trial (4S) with over 4400 patients with heart disease found that lowering cholesterol led to fewer heart attacks (37%) and reduced death from heart disease (42%) in men and women who already had heart disease and high cholesterol. Another study (CARE) showed that lowering cholesterol (using statins) in patients with heart disease reduced the risk of having another heart attack or dying by 24%. The LIPID study is another study that showed statins with dietary changes had a large effect on cholesterol numbers. It also reduced the overall death rate by 22%, heart attacks by 29%, stroke by 19% and the need for bypass or angioplasty by 20%.^{26,27}
 - The Portfolio study took a variety of known cholesterol-lowering foods and compared their effect of this to the use of a statin-drug combined with a low-fat diet. The foods included plant sterols (found in vegetables, nuts (almonds), and seeds and legumes, soy protein, and soluble fiber. After one month, cholesterol reduction was 28%, which was comparable to the statin/low-fat diet group and both these groups were statistically significantly better than control.⁴⁵

Lifestyle and Dietary Modifications:

- Weight loss and increase in physical activity as indicated (30-60 minutes daily or 150 minutes per week).^{20,55}
- Regular moderate exercise works in combination with a low-fat diet and has been shown to decrease triglycerides and LDL and increase HDL levels. Being overweight lowers HDL cholesterol and increases risk of heart disease and stroke. Studies in children with familial hypercholesterolemia show that a heart healthy diet implemented with dietary advice can lower total cholesterol levels.^{56,57,58}
- Stress reduction (meditation, exercise, tai chi, learning and using coping skills).⁵⁹
- Nicotine cessation.
- Dietary changes⁶⁰, including:
 - Mediterranean Diet.⁶¹
 - DASH Diet.⁶²
 - Tibetan diet.⁶³
 - Soy protein.
 - A 2019 meta-analysis (46 RCTs) concluded, found a 3-4% reduction in LDL and concluded, "...data support the advice given to the general public internationally to increase plant protein intake."⁶⁴
- Plant based diet.
- Decrease "bad fats", such as trans fats and increase polyunsaturated, or monounsaturated fats.
- Decrease dietary cholesterol (this does not include a general limitation on eggs as previously reported)⁶⁵
- Increase the amount of wild heart-healthy fish consumed.

- Alcohol in moderation.
- Increase in soluble fiber (fruits, vegetables, grains, oat bran, oatmeal, beans, peas, rice bran, barley, citrus fruits, strawberries, and apple pulp).^{66,67}
- Lifestyle changes in patients with diabetes are crucial.

Herbal Medicine (Western):

- Red yeast rice (RYR) extract. Produced by the fungus *Monascus purpureus* during the fermentation of rice; main component is monacolin K which is structurally identical to Lovastatin.
 - A 2024 meta-analysis (14 RCTs; N=770) as well as an earlier 2022 meta-analysis (15 RCTs, N=1,012) suggests red yeast rice (RYR: 200-4,800mg daily) is a safe and effective treatment.^{68,69}
 - 2024 MA(14 RCTs; N=770): RYR was superior to control; MD: 37.43mg/dL (95% CI: -47.08 to 27.79; p<0.001)
 - 2022 MA (9 RCTs; N=613): RYR was superior to control; MD: 35.82 (95% CI: -43.36 to -28.29; p<0.00001)
 - 2022 MA (2 RCTs; N=103): RYR was equivalent to statins; MD: -2.71 (95% CI: -10.59 to 5.17; p=0.50)

*N.B. Research suggests that a reduction of TC by 19.3mg/dL leads to a 9% reduction in all-cause mortality for the average U.S. adult.⁷⁰ The average U.S. adult has a TC level of 203 mg/dL.⁷¹
- Plicosanol (mixed results).^{72,73}
- Various herbal medicines and combination supplements.

Curcuma longa (Curcumin),^{74,75} *Irvingia gabonensis*,⁷⁶ *Vaccinium macrocarpon* (Cranberry),⁷⁷ *Citrullus colocynthis*⁷⁸, *Hibiscus sabdariffa*,^{79,80} *Terminalia arjuna*,¹⁸⁴ *Cinnamomum verum* or spp. (Cinnamon),^{81,82} *Cynara cardunculus* (Artichoke) leaf extract,^{83,84} *Berberis* spp. Berberine,^{85,86} *Achillea millefolium* (Yarrow),⁸⁷ *Ocimum tenuiflorum* (Holy basil),⁸⁸ *Aloe vera*,⁸⁹ *Salvia miltiorrhiza*,⁹⁰ *Pueraria lobata*,⁹¹ *Trigonella foenum-graecum* (Fenugreek) seeds and leaves.^{92,93}
- Lycopene.⁹⁴
- Bergamot and RYR appear to be the most effective nutraceuticals in terms of LDL-C and TC reduction.⁹⁵

Herbal Medicine (Traditional East Asian Medicine):

- Chinese Herbal Medicine
 - A 2022 network meta-analysis (47 RCTs; N=4,824) suggests that RYR combined with Chinese herbs, has comparable and in some cases superior effects compared to Simvastatin.^{96,97}
 - TC levels: Xuezhikang (*SUCRA: 84.5%); Simvastatin (66.4%) Zhibitai (65.4%).
 - LDL-C: Xuezhikang (SUCRA: 82.6%); Simvastatin (SUCRA: 74.9%); Zhibituo (SUCRA: 52.8%).

- The authors suggest interpreting the results with caution due to low methodological quality. Of note, all trials were published in Chinese, and none were indexed on PubMed.
 - **Surface Under the Cumulative Ranking Curve (SUCRA) is a statistical technique to estimate probability effects as a numeric presentation of ranking, presented as a single number for each treatment.*

Supplements and Nutrients:

- Fish and fish oil (DHA/EPA)⁹⁸
 - There is strong evidence to show that fish oils (EPA plus DHA) can decrease triglycerides and LDL, and increase HDL (2-4 grams/day, 4:1 EPA: DHA) in part by reducing liver production and release of VLDL. Reduction does appear to be dose dependent. If fish oil supplements are to be used, the label should be checked for contaminant testing (heavy metals and pesticides).^{99,100,101} Avoid in patients with known hypersensitivity to fish. May prolong bleeding time. Assess coagulation studies as needed.
 - A 2023 network meta-analysis (90 RCTs; N= 72 598) concluded that combined intake of omega-3 fatty acids near linearly lowers triglyceride and non-high-density lipoprotein cholesterol.¹⁰²
- Omega-3 rich oils (walnuts, almonds, avocados, olive oil, and flax seeds are all good sources of these “healthy oils”).^{103,104,105}
 - Certain nuts (almonds, pecans, macadamias, and walnuts) are high in polyunsaturated or monounsaturated fatty acids and compounds such as plant sterols, and fiber. Consumption has been associated with a decrease in LDL. The American Heart Association (AHA) dietary guidelines suggest using nuts and other sources of unsaturated fatty acids as a replacement for foods containing saturated and trans-fatty acids.¹⁰⁶
 - Flaxseed (20 - 50 g) is a very healthy fiber food and one benefit is it seems to reduce TC and LDL levels, but further studies are needed to determine its precise role in treating hyperlipidemia.¹⁰⁷
- Soluble Fiber (oat bran, barley flour, psyllium, legumes (peas and beans), fruits (apples, pears, prunes), some vegetables (yams, Brussels sprouts).^{45,108,109}
 - Five to 10 g/day is associated with a 5% reduction in LDL. This can be obtained with a high-fiber diet or with dietary supplementation.¹¹⁰
- Almonds¹¹¹, pistachios.¹¹²
- Pomegranate seed oil.¹¹³
- Garlic (mixed studies) (caution with blood thinners).^{114,115,116}
- Plant sterols/stanols (phytosterols).^{117, 118, 119}
 - These occur naturally in some fruits, vegetables, nuts, seeds, legumes, vegetable oils, and other plant sources.
- Barley oil extract or fiber.^{120,121,,122}
- CoQ10 (may decrease muscle pain associated with “statin” treatment).^{123,124}
- L-Arginine.

- Pycnogenol.¹²⁵
- Anthocyanins.¹²⁶
- Probiotics.^{127,128}
- Chia seed.¹²⁹
- Rice bran oil.^{130,131}
- L-carnitine.¹³²
- Green tea.

Pharmaceuticals (Prescription):

There are specific guidelines for drug treatment options based upon the National Cholesterol Education Program (NCEP; Adult Treatment Panel [ATP] III). These include treatment specifics for elevated cholesterol vs. triglycerides or both and focus on atherosclerotic cardiovascular disease (ASCVD) risk reduction. Guidelines for initiation and monitoring can be found in the American College of Cardiology/American Heart Association Guideline¹³³ which can be found at: http://www.onlinejacc.org/content/accj/63/25_Part_B/2889.full.pdf

There are mixed results on the research of aspirin in the routine primary prevention of cardiovascular disease.

Prescription Medications:

- Lipid-lowering medications (statins) is first line pharmaceutical therapy. Statins are the strongest drugs for lowering LDL cholesterol and are the most effective researched drug for prevention of coronary heart disease, heart attack, stroke, and death. Statins may decrease the body's synthesis of cholesterol and can reduce LDL levels by as much as 20 to 60 percent. In addition, statins can lower triglycerides and slightly raise HDL cholesterol levels.^{134,135,136,137,138} Side effects of statins include myalgia, elevated liver enzymes and liver damage (LFTs should be measured at baseline and regularly). Rare adverse effects are rhabdomyolysis, digestive problems, rash or flushing, and neurological effects.¹³⁹ Patient compliance can be low due to side effects.

The Blood Cholesterol Expert Panel concluded that based on "a large and consistent body of evidence, 4 major statin benefit groups were identified for whom the ASCVD risk reduction clearly outweighs the risk of adverse events. Individuals with: 1) with *clinical* ASCVD; 2) primary elevations of LDL-C >190 mg/dL; 3) diabetes aged 40 to 75 years with LDL-C 70 to 189 mg/dL and without clinical ASCVD, or; 4) without *clinical* ASCVD or diabetes with LDL-C 70 to 189 mg/dL and estimated 10-year ASCVD risk >7.5%."

The results of this meta-analysis suggest that the absolute risk reductions of treatment with statins in terms of all-cause mortality, myocardial infarction, and stroke are modest compared with the relative risk reductions, and the presence of significant heterogeneity reduces the certainty of the evidence. A conclusive association between absolute reductions in LDL-C levels and individual clinical outcomes was not established, and these findings underscore the importance of discussing absolute risk reductions when making informed clinical decisions

with individual patients.¹⁴⁰

Patients who do not tolerate statins, should be started on a non-statin lipid-lowering medication.

- Ezetimibe (cholesterol absorption inhibitors).¹⁴¹
- Bile acid sequestrants (should be avoided until triglyceride levels have been normalized).
- PCSK9 Inhibitors (Proprotein convertase subtilisin/kexin type 9).
- Evolocumab (monoclonal antibody).¹⁴²
- Fibrates (gemfibrozil, fenofibrate and fenofibric acid).
- Nicotinic acid (Niacin) – available OTC or as a prescription in higher doses (Nicotinic acid may worsen glucose tolerance in diabetic patients).^{143,144,145}
- Inclisiran is a reasonable alternative to, PCSK-9 inhibitors, in patients who struggle with the self-injection.¹⁴⁶

Treatment of elevated lipid levels in children is controversial.

Soft Tissue Therapies:

- Yoga.¹⁴⁷
- Tai Chi.¹⁴⁸

Acupuncture (excluding pharmocoacupuncture):

- Lifestyle modifications are a component of acupuncture treatments, where time is afforded to weave TCM- based lifestyle advice into the discussion. It is advised to discuss the lifestyle recommendation mentioned above during patient visits. In total, ~70 publications have assessed the effect of acupuncture on lipid levels, however <20 have been published in English. Of note, the majority of research seems to have focused on the effects of a single acupoint, ST-40.^{149,150,151,152,153,154,155} Based on the limited amount of evidence no conclusions can be made.
 - A small body of literature indicates that modest benefits may be observed for patients with hyperlipidemia.^{156,157,158,159,160,161}
 - Limited RCTs published in English (n=2).
 - Caution is warranted due to low methodological quality.

Length of Treatment

- Lifestyle and diet modification may take 6-12 months to take effect.
- Supplementation or prescription medications may take 6-12 weeks for lab values to change. Labs should be rechecked every 3-6 months until values are optimized. Measuring LDL-C response at 4-12 weeks after initiating therapy and every 3-12 months depending on the patient. Thereafter, it may also be helpful in assessing adherence to medication and diet.²⁷² Liver function tests should be performed prior to therapy and as clinically indicated thereafter.

- The prevention and treatment of high cholesterol and/or triglycerides is a lifelong process.
- Stopping treatment or discontinuing beneficial changes in diet or exercise usually results in an increase in lipid levels.

Referral Criteria

Refer patients who may need a more extensive cardiovascular workup, those with significant personal or family history of cardiovascular disease, who develop concomitant risk factors or disease, or those who do not respond to treatment.

Resources for Clinicians

Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. *J Am Coll Cardiol.* 2019;74(10):1376-1414.

Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, Chapman MJ, De Backer GG, Delgado V, Ference BA, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. *Eur Heart J.* 2020; 41:111–188.

Grundy SM, Stone NJ, Bailey AL, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. *J Am Coll Cardiol.* 2019;73(24):e285-e350.

National Heart Lung and Blood Institute. Third Report of the Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). <https://www.nhlbi.nih.gov/health-topics/blood-cholesterol>

Resources for Patients

American Heart Association

http://www.heart.org/HEARTORG/Conditions/Cholesterol_UCM_001089_SubHomePage.jsp

Clinical Pathway Feedback

CHP desires to keep our clinical pathways customarily updated. If you wish to provide additional input, please use the e-mail address listed below and identify which clinical pathway you are referencing. Thank you for taking the time to give us your comments.

Clinical Services Department: cs@chpgroup.com

Disclaimer Notice

The CHP Group (CHP) Clinical Pathways are a resource to assist clinicians and are not intended to be nor should they be construed/used as medical advice. The pathways contain information that may be helpful for clinicians and their patients to make informed clinical decisions, but they cannot account for all clinical circumstances. Each patient presents with specific clinical circumstances and values requiring individualized care which may warrant adaptation from the pathway. Treatment decisions are made collaboratively by patients and their practitioner after an assessment of the clinical condition, consideration of options for treatment, any material risk, and an opportunity for the patient to ask any questions.

CHP makes no representation and accepts no liability with respect to the content of any external information cited or relied upon in the pathways. The presence of a particular procedure or treatment modality in a clinical pathway does not constitute a representation or warranty that this service is covered by a patient's benefit plan. The patient's benefit plan determines coverage.

¹ CDC. Heart Disease Statistics and Maps. 2015 [cited 2020 June 26, 2020]; Available from: <https://www.cdc.gov/heartdisease/facts.htm>.

² Yusuf, S., et al., Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. *Lancet*, 2004. 364(9438): p. 937-52.

³ Lloyd-Jones, D.M., et al., Lifetime risk of coronary heart disease by cholesterol levels at selected ages. *Arch Intern Med*, 2003. 163(16): p. 1966-72.

⁴ Hawk C, Ndetan H, Evans MW Jr. Potential role for complementary and alternative health care providers in chronic disease prevention and health promotion: an analysis of National Health Interview Survey data. *Prev Med*. 2012 Jan;54(1):18-22.

⁵ National Heart Lung and Blood Institute. Third Report of the Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). <https://www.nhlbi.nih.gov/health-topics/high-blood-cholesterol>

⁶ Kinosian B, Glick H, Garland G. Cholesterol and coronary heart disease: Predicting risks by levels and ratios. *Ann Intern Med* 1994; 121:641.

⁷ Jellinger PS, et al: American Association Of Clinical Endocrinologists And American College Of Endocrinology Guidelines For Management Of Dyslipidemia And Prevention Of Cardiovascular Disease. *Endocrine practice : official journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists* 2017, 23(Suppl 2):1-87.

⁸ Anderson TJ, Gregoire J, Pearson GJ, Barry AR, Couture P, Dawes M, Francis GA, Genest J, Jr., Grover S, Gupta M et al: 2016 Canadian Cardiovascular Society Guidelines for the Management of Dyslipidemia for the Prevention of Cardiovascular Disease in the Adult. *The Canadian journal of cardiology* 2016, 32(11):1263-1282.

⁹ Reiner Z, et al: ESC/EAS Guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). *Eur Heart J* 2011, 32(14):1769-1818.

¹⁰ Stone NJ, et al: 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. *Circulation* 2014, 129(25 Suppl 2):S1-45.

¹¹ Naylor M, Vasan RS: Recent Update to the US Cholesterol Treatment Guidelines: A Comparison With International Guidelines. *Circulation* 2016, 133(18):1795-1806.

¹⁴ Reiter-brennan C, Osei AD, Iftekhar uddin SM, et al. ACC/AHA lipid guidelines: Personalized care to prevent cardiovascular disease. *Cleve Clin J Med*. 2020;87(4):231-239.

²⁰ Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. *J Am Coll Cardiol.* 2019;74(10):1376-1414.

²¹ Turgeon RD, et al. Familial Hypercholesterolemia: Review of Diagnosis, Screening, and Treatment. *Can Fam Physician.* 2016;62:32-37.

²² D'Agostino RB, Grundy S, Sullivan LM, Wilson, P. Validation of the Framingham Coronary Heart Disease Prediction Scores: Results of a Multiple Ethnic Groups Investigation. *JAMA* 2001; 286:180.

²³ Berg AH. Scberer PF. Adipose tissue, inflammation, and cardiovascular disease. *Circ. Res.* 2005; 96: 939-949.

²⁴ Third report of the National Cholesterol Education Program (NCEP) Expert Panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). *Circulation* 2002;106:3143.

²⁵ Sacks FM, Ridker PM. Herz.. Lipid lowering and beyond: results from the CARE study on lipoproteins and inflammation. *Cholesterol and Recurrent Events.* 1999 Feb; 24(1):51-6.

²⁶ Hague W, Forder P, Simes J, Hunt D, Tonkin. Effect of pravastatin on cardiovascular events and mortality in 1516 women with coronary heart disease: results from the Long-Term Intervention with Pravastatin in Ischemic Disease (LIPID) study. A; LIPID Investigators. *Am Heart J.* 2003 Apr;145(4):643-51.

²⁷ Jenkins DJ, et al. Effects of a dietary portfolio of cholesterol-lowering foods vs. lovastatin on serum lipids and C-reactive protein. *JAMA.* 2003 Jul 23; 290(4):502-10.

²⁸ Ulf Ekelund Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents. *JAMA.* 2012 Feb 15;307(7):704-12.

²⁹ Jovanović Z, et al. Effects of obesity reduction on cardiovascular risk factors: comparison of individual and group treatment--substudy of the Croatian Healthy Weight Loss Programme. *Coll Antropol.* 2009 Sep;33(3): 751-7.

³⁰ Gordon LA, et al. Effect of exercise therapy on lipid profile and oxidative stress indicators in patients with type 2 diabetes. *BMC Complement Altern Med.* 2008 May 13;8:21.

³¹ Maesta N, et al. Effects of soy protein and resistance exercise on body composition and blood lipids in postmenopausal women. *Maturitas.* 2007 Apr 20;56(4):350-8.

³² Field T. Tai Chi research review. *Complement Ther Clin Pract.* 2011 Aug;17(3):141-6.

³³ The effects of foods on LDL cholesterol levels: A systematic review of the accumulated evidence from systematic reviews and meta-analyses of randomized controlled trials. Schoeneck M, Iggman D. *Nutr Metab Cardiovasc Dis.* 2021 May 6;31(5):1325-1338. doi: 10.1016/j.numecd.2020.12.032. Epub 2021 Jan 16. PMID: 33762150

³⁴ Rees K, Hartley L, et al. 'Mediterranean' dietary pattern for the primary prevention of cardiovascular disease. Published Online. *Cochrane Database.* Aug 12,2013.CD009825

³⁵ The effects of the Dietary Approaches to Stop Hypertension (DASH) diet on metabolic risk factors in patients with chronic disease: A systematic review and meta-analysis of randomized controlled trials. Lari A, Sohouli MH, Fatahi S, Cerqueira HS, Santos HO, Pourjabab B, Rezaei M, Saneie S, Rahideh ST. *Nutr Metab Cardiovasc Dis.* 2021 Sep 22;31(10):2766-2778. doi: 10.1016/j.numecd.2021.05.030. Epub 2021 Jun 10. PMID: 34353704

³⁶ Von haehling S, Stellos K, Qusar N, Gawaz M, Bigalke B. Weight reduction in patients with coronary artery disease: comparison of Traditional Tibetan Medicine and Western diet. *Int J Cardiol.* 2013;168(2):1509-15.

³⁷ Costa, R.L. and M.A. Summa, Soy protein in the management of hyperlipidemia. *Ann Pharmacother.* 2000. 34(7-8): p. 931-5.

³⁸ Kritchevsky SB. A review of scientific research and recommendations regarding eggs. *J Am Coll Nutr.* 2004 Dec;23(6 Suppl):596S-600S.

³⁹ King DE. Dietary fiber, inflammation, and cardiovascular disease. *Mol Nutr Food Res.* 2005 Jun;49(6):594-600.

⁴⁰ Rimm EB, et al. Vegetable, fruit, and cereal fiber intake and risk of coronary heart disease among men. *JAMA.* 1996 Feb 14;275(6):447-51.

⁴¹ Li, P., et al., Red Yeast Rice for Hyperlipidemia: A Meta-Analysis of 15 High-Quality Randomized Controlled Trials. *Front Pharmacol.* 2021. 12: p. 819482.

⁴² Trogkanis, E., et al., Safety and Efficacy of the Consumption of the Nutraceutical "Red Yeast Rice Extract" for the Reduction of Hypercholesterolemia in Humans: A Systematic Review and Meta-Analysis. *Nutrients.* 2024. 16(10).

⁴³ Gould, A.L., et al., Cholesterol reduction yields clinical benefits: meta-analysis including recent trials. *Clin Ther.* 2007. 29(5): p. 778-94.

⁷¹ Ford, E.S., et al., Serum total cholesterol concentrations and awareness, treatment, and control of hypercholesterolemia among US adults: findings from the National Health and Nutrition Examination Survey, 1999 to 2000. *Circulation*, 2003. 107(17): p. 2185-9.

⁷² Castano G, et al. Effects of policosanol and pravastatin on lipid profile, platelet aggregation and endothelema in older hypercholesterolemic patients. *Int J Clin Pharmacol Res*. 1999;19:105-16.

⁷³ Castano G, et al. Concomitant use of policosanol and β -blockers in older patients. *Int J Clin Pharm Res*. 2004;24:65-77.

⁷⁴ Pungcharoenkul K, Thongnoppua P. Effect of different curcuminoid supplement dosages on total in vivo antioxidant capacity and cholesterol levels of healthy human subjects. *Phytother Res*. 2011 Nov;25(11):1721-6.

⁷⁵ A Systematic Review and Meta-analysis of Randomized Controlled Trials on the Effects of Turmeric and Curcuminoids on Blood Lipids in Adults with Metabolic Diseases. Yuan F, Dong H, Gong J, Wang D, Hu M, Huang W, Fang K, Qin X, Qiu X, Yang X, Lu F. *Adv Nutr*. 2019 Sep 1;10(5):791-802. doi: 10.1093/advances/nmz021. PMID: 31212316

⁷⁶ Ngondi JL, Etoundi BC, Nyangono CB, Mbafung CM, Oben JE. IGOB131, a novel seed extract of the West African plant Irvingia gabonensis, significantly reduces body weight and improves metabolic parameters in overweight humans in a randomized double-blind placebo controlled investigation. *Lipids Health Dis*. 2009 Mar 2;8:7.

⁷⁷ McKay DL, Blumberg JB. Cranberries (*Vaccinium macrocarpon*) and cardiovascular disease risk factors. *Nutr Rev*. 2007 Nov;65(11):490-502.

⁷⁸ Rahbar AR, Nabipour I. The hypolipidemic effect of *Citrullus colocynthis* on patients with hyperlipidemia. *Pak J Biol Sci*. 2010 Dec 15;13(24):1202-7.

⁷⁹ Mozaffari-Khosravi H, Jalali-Khanabadi BA, Afkhami-Ardekani M, Fatehi F. Effects of sour tea (*Hibiscus sabdariffa*) on lipid profile and lipoproteins in patients with type II diabetes. *J Altern Complement Med*. 2009 Aug;15(8):899-903.

⁸⁰ Showande SJ, Adegbolagun OM, Igbinoba SI, Fakeye TO. In vivo pharmacodynamic and pharmacokinetic interactions of *Hibiscus sabdariffa* calyces extracts with simvastatin. *J Clin Pharm Ther*. 2017;42(6):695-703.

⁸¹ Baker WL, et al. Effect of cinnamon on glucose control and lipid parameters. *Diabetes Care* 2008;31:41-3.

⁸² Khan A, et al. Cinnamon improves glucose and lipids of people with type 2 diabetes. *Diabetes Care* 2003;26:3215-8.

⁸³ Bundy R, Walker AF, Middleton RW, Wallis C, Simpson HC. Artichoke leaf extract (*Cynara scolymus*) reduces plasma cholesterol in otherwise healthy hypercholesterolemic adults: a randomized, double blind placebo controlled trial. *Phytomedicine*. 2008 Sep;15(9):668-75.

⁸⁴ Wider B, Pittler MH, Thompson-Coon J, Ernst E. Artichoke leaf extract for treating hypercholesterolemia. *Cochrane Database Syst Rev*. 2009 Oct 7;(4).

⁸⁵ Lan J, Zhao Y, Dong F, et al. Meta-analysis of the effect and safety of berberine in the treatment of type 2 diabetes mellitus, hyperlipidemia and hypertension. *J Ethnopharmacol*. 2015;161:69-81.

⁸⁶ Koppen LM, Whitaker A, Rosene A, Beckett RD. Efficacy of Berberine Alone and in Combination for the Treatment of Hyperlipidemia: A Systematic Review. *J Evid Based Complementary Altern Med*. 2017;22(4):956-968.

⁸⁷ Asgary S, Naderi et al. Antihypertensive and antihyperlipidemic effects of *Achillea wilhelmsii*. *Drugs Exp Clin Res*. 2000;26(3):89-93.

⁸⁸ Agrawal P, Rai V, Singh RB. Randomized placebo-controlled, single blind trial of holy basil leaves in patients with noninsulin-dependent diabetes mellitus. *Int J Clin Pharmacol Ther*. 1996 Sep;34(9):406-9.

⁸⁹ Ngo MQ, Nguyen NN, Shah SA. Oral aloe vera for treatment of diabetes mellitus and dyslipidemia. *Am J Health Syst Pharm*. 2010 Nov 1;67(21):1804, 1806, 1808.

⁹⁰ Kianbakht S, Abasi B, Perham M, Hashem Dabaghian F. Antihyperlipidemic effects of *Salvia officinalis* L. leaf extract in patients with hyperlipidemia: a randomized double-blind placebo-controlled clinical trial. *Phytother Res*. 2011 Dec;25(12):1849-53.

⁹¹ Tam WY et al. The efficacy and tolerability of adjunctive alternative herbal medicine (*Salvia miltiorrhiza* and *Pueraria lobata*) on vascular function and structure in coronary patients. *J Altern Complement Med*. 2009 Apr;15(4):415-21.

⁹² Geberemeskel GA, Debebe YG, Nguse NA. Antidiabetic Effect of Fenugreek Seed Powder Solution (.) on Hyperlipidemia in Diabetic Patients. *J Diabetes Res*. 2019;2019:8507453.

⁹³ Effect of fenugreek supplementation on blood lipids and body weight: A systematic review and meta-analysis of randomized controlled trials. Askarpour M, Alami F, Campbell MS, Venkatakrishnan K, Hadi A, Ghaedi E.J Ethnopharmacol. 2020 May 10;253:112538. doi: 10.1016/j.jep.2019.112538. Epub 2020 Feb 20. PMID: 32087319

⁹⁴ Ried K, Fakler P. Protective effect of lycopene on serum cholesterol and blood pressure: Meta-analyses of intervention trials. *Maturitas*. 2011 Apr;68(4):299-310.

⁹⁵ Osadnik T et al., A network meta-analysis on the comparative effect of nutraceuticals on lipid profile in adults, *Pharmacol Res.* 2022 Sep;183:106402. doi: 10.1016/j.phrs.2022.106402. Epub 2022 Aug 18.

⁹⁶ Xu, G., et al., Comparing the effectiveness of Chinese patent medicines containing red yeast rice on hyperlipidaemia: A network meta-analysis of randomized controlled trials. *Endocrinol Diabetes Metab*, 2022. 5(1): p. e00314.

⁹⁷ Xu, G., et al., *Comparing the effectiveness of Chinese patent medicines containing red yeast rice on hyperlipidaemia: A network meta-analysis of randomized controlled trials.* Endocrinol Diabetes Metab, 2022. 5(1): p. e00314.

⁹⁸ Zhou Q, Zhang Z, Wang P, et al. EPA+DHA, but not ALA, Improved Lipids and Inflammation Status in Hypercholesterolemic Adults: A Randomized, Double-Blind, Placebo-Controlled Trial. *Mol Nutr Food Res.* 2019;63(10):e1801157.

⁹⁹ McKenney JM, Sica D. Prescription omega-3 fatty acids for the treatment of hypertriglyceridemia. *Am J Health Syst Pharm.* 2007 Mar 15;64(6):595-605.

¹⁰⁰ Leaf DA, Hatcher L. The effect of lean fish consumption on triglyceride levels. *Phys Sportsmed.* 2009 Apr;37(1):37-43.

¹⁰¹ Covington MB. Omega-3 fatty acids. *Am Fam Physician.* 2004 Jul 1;70(1):133-40.

¹⁰² Wang T, Zhang X, Zhou N, Shen Y, Li B, Chen B E, Li X, Association Between Omega-3 Fatty Acid Intake and Dyslipidemia: A Continuous Dose-Response Meta-Analysis of Randomized Controlled Trials, *J Am Heart Assoc.* 2023 Jun 6;12(11):e029512. doi: 10.1161/JAHA.123.029512. Epub 2023 Jun 2.

¹⁰³ Patade A, et al. Flaxseed reduces total and LDL cholesterol concentrations in Native American post-menopausal women. *J Womens Health (Larchmt)*. 2008 Apr;17(3):355-66.

¹⁰⁴ Zibaeenezhad MJ, Farhadi P, Attar A, Mosleh A, Amirmoezi F, Azimi A. Effects of walnut oil on lipid profiles in hyperlipidemic type 2 diabetic patients: a randomized, double-blind, placebo-controlled trial. *Nutr Diabetes.* 2017;7(4):e259.

¹⁰⁵ Effects of Canola Oil Consumption on Lipid Profile: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. Ghobadi S, Hassanzadeh-Rostami Z, Mohammadian F, Zare M, Faghih S.J Am Coll Nutr. 2019 Feb;38(2):185-196. doi: 10.1080/07315724.2018.1475270. Epub 2018 Oct 31. PMID: 30381009

¹⁰⁶ Canales A, et al. Platelet aggregation, eicosanoid production and thrombogenic ratio in individuals at high cardiovascular risk consuming meat enriched in walnut paste. A crossover, placebo-controlled study. *Br J Nutr.* 2009 Jul;102(1):134-41.

¹⁰⁷ Bloedon LT, et al. Flaxseed and cardiovascular risk factors: results from a double blind, randomized, controlled clinical trial. *J Am Coll Nutr.* 2008 Feb;27(1):65-74.

¹⁰⁸ Anderson JW, et al. Cholesterol-lowering effects of psyllium intake adjunctive to diet therapy in men and women with hypercholesterolemia: meta-analysis of 8 controlled trials. *Am J Clin Nutr* 2000;71:472-9.

¹⁰⁹ Sartore G, et al. The effects of psyllium on lipoproteins in type II diabetic patients. *Eur J Clin Nutr.* 2009 Oct; 63(10):1269-71.

¹¹⁰ Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) Expert Panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). *JAMA* 2001;285:2486-97.

¹¹¹ Wien M, et al. Almond consumption and cardiovascular risk factors in adults with prediabetes. *J Am Coll Nutr.* 2010 Jun;29(3):189-97.

¹¹² Gebauer SK, et al. Effects of pistachios on cardiovascular disease risk factors and potential mechanisms of action: a dose-response study. *Am J Clin Nutr.* 2008 Sep;88(3):651-9.

¹¹³ Mirmiran P, Fazeli MR, Asghari G, Shafiee A, Azizi F. Effect of pomegranate seed oil on hyperlipidaemic subjects: a double-blind placebo-controlled clinical trial. *Br J Nutr.* 2010 Aug;104(3):402-6.

¹¹⁴ Reinhart KM, Talati R, White CM, Coleman CI. The impact of garlic on lipid parameters: a systematic review and meta-analysis. *Nutr Res Rev.* 2009 Jun;22(1):39-48.

¹¹⁵ Stevinson C, Pittler MH, Ernst E. Garlic for treating hypercholesterolemia: a meta-analysis of randomized clinical trials. *Ann Intern Med* 2000;133:420-9.

¹¹⁶ Ginter E, Simko V. Garlic (Allium sativum L.) and cardiovascular diseases. *Bratisl Lek Listy*. 2010;111(8):452-6.

¹¹⁷ JT, Wesley R, Shamburek RD, Pucino F, Csako G. Meta-analysis of natural therapies for hyperlipidemia: plant sterols and stanols versus policosanol. *Pharmacotherapy*. 2005;25:171-83.

¹¹⁸ Gylling H, Hallikainen M, Nissinen MJ, Simonen P, Miettinen TA. Very high plant stanol intake and serum plant stanols and non-cholesterol sterols. *Eur J Nutr*. 2010 Mar;49(2):111-7.

¹¹⁹ Madsen MB, Jensen AM, Schmidt EB. The effect of a combination of plant sterol-enriched foods in mildly hypercholesterolemic subjects. *Clin Nutr*. 2007 Dec;26(6):792-8.

¹²⁰ Behall KM, Scholfield DJ, Hallfrisch J. Lipids significantly reduced by diets containing barley in moderately hypercholesterolemic men. *J Am Coll Nutr* 2004;23:55-62.

¹²¹ Lupton JR, Robinson MC, Morin JL. Cholesterol-lowering effect of barley bran flour and oil. *J Am Diet Assoc* 1994;94:65-70.

¹²² AbuMweis SS, Jew S, Ames NP. β -glucan from barley and its lipid-lowering capacity: a meta-analysis of randomized, controlled trials. *Eur J Clin Nutr*. 2010 Dec;64(12):1472-80.

¹²³ Caso G, Kelly P, McNurlan MA, Lawson WE. Effect of coenzyme q10 on myopathic symptoms in patients treated with statins. *Am J Cardiol*. 2007 May 15;99(10):1409-12.

¹²⁴ Littarlu GP, Langsjoen P. Coenzyme Q10 and statins: biochemical and clinical implications. *Mitochondrion*. 2007 Jun;7 Suppl:S168-74.

¹²⁵ Zibadi S, Rohdewald PJ, Park D, Watson RR. Reduction of cardiovascular risk factors in subjects with type 2 diabetes by Pycnogenol supplementation. *Nutr Res*. 2008 May;28(5):315-20.

¹²⁶ Qin Y, et al. Anthocyanin supplementation improves serum LDL- and HDL-cholesterol concentrations associated with the inhibition of cholesteryl ester transfer protein in dyslipidemic subjects. *Am J Clin Nutr*. 2009 Sep;90(3):485-92.

¹²⁷ Costabile A, Buttarazzi I, Kolida S, et al. An in vivo assessment of the cholesterol-lowering efficacy of Lactobacillus plantarum ECGC 13110402 in normal to mildly hypercholesterolaemic adults. *PLoS ONE*. 2017;12(12):e0187964.

¹²⁸ The Impact of Microbial Composition on Postprandial Glycaemia and Lipidaemia: A Systematic Review of Current Evidence. Wilson ML, Davies IG, Waraksa W, Khayyatzadeh SS, Al-Asmakh M, Mazidi M. *Nutrients*. 2021 Oct 29;13(11):3887. doi: 10.3390/nu13113887. PMID: 34836140

¹²⁹ Chia seed (Salvia hispanica L.) consumption and lipid profile: a systematic review and meta-analysis. Silva LA, Verneque BJF, Mota APL, Duarte CK. *Food Funct*. 2021 Oct 4;12(19):8835-8849. doi: 10.1039/d1fo01287h. PMID: 34378609

¹³⁰ The impact of rice bran oil consumption on the serum lipid profile in adults: a systematic review and meta-analysis of randomized controlled trials. Pourrajab B, Sohouli MH, Amirinejad A, Fatahi S, Gaman MA, Shidfar F. *Crit Rev Food Sci Nutr*. 2021 Mar 10:1-11. doi: 10.1080/10408398.2021.1895062. Online ahead of print. PMID: 33715544

¹³¹ Rice Bran Oil Decreases Total and LDL Cholesterol in Humans: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials.

Jolfaie NR, Rouhani MH, Surkan PJ, Siassi F, Azadbakht L. *Horm Metab Res*. 2016 Jul;48(7):417-26. doi: 10.1055/s-0042-105748. Epub 2016 Jun 16. PMID: 27311126 Review.

¹³² Efficacy of l-carnitine supplementation for management of blood lipids: A systematic review and dose-response meta-analysis of randomized controlled trials. Askarpour M, Hadi A, Symonds ME, Miraghajani M, Omid Sadeghi, Sheikhi A, Ghaedi E. *Nutr Metab Cardiovasc Dis*. 2019 Nov;29(11):1151-1167. doi: 10.1016/j.numecd.2019.07.012. Epub 2019 Jul 24. PMID: 31561944

¹³³ Stone NJ, Robinson JG, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. *Circulation*. 2014;129(25 Suppl 2):S1-45.

¹³⁴ Ford I, Murray H, Mccowan C, Packard CJ. Long-Term Safety and Efficacy of Lowering Low-Density Lipoprotein Cholesterol With Statin Therapy: 20-Year Follow-Up of West of Scotland Coronary Prevention Study. *Circulation*. 2016;133(11):1073-80.

¹³⁵ Mihaylova B, Emberson J, Blackwell L, et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. *Lancet*. 2012;380(9841):581-90.

¹³⁶ Taylor F, Huffman MD, Macedo AF, et al. Statins for the primary prevention of cardiovascular disease. *Cochrane Database Syst Rev*. 2013;(1):CD004816.

¹³⁷ Chou R, Dana T, Blazina I, Daeges M, Jeanne TL. Statins for Prevention of Cardiovascular Disease in Adults: Evidence Report and Systematic Review for the US Preventive Services Task Force. *JAMA*. 2016;316(19):2008-2024.

¹³⁸ Silverman MG, Ference BA, Im K, et al. Association Between Lowering LDL-C and Cardiovascular Risk Reduction Among Different Therapeutic Interventions: A Systematic Review and Meta-analysis. *JAMA*. 2016;316(12):1289-97.

¹³⁹ Joy TR, Hegele RA. Narrative review: statin-related myopathy. *Ann Intern Med*. 2009 Jun 16;150(12):858-68.

¹⁴⁰ Byrne, P., et al., *Evaluating the Association Between Low-Density Lipoprotein Cholesterol Reduction and Relative and Absolute Effects of Statin Treatment: A Systematic Review and Meta-analysis*. *JAMA Intern Med*, 2022. 182(5): p. 474-481.

¹⁴¹ Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. *J Am Coll Cardiol*. 2019;74(10):1376-1414.

¹⁴² Sabatine MS, Giugliano RP, Keech AC, et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. *N Engl J Med*. 2017. 376(18): 1713-1722.

¹⁴³ Grundy SM, et al. Efficacy, safety, and tolerability of once-daily niacin for the treatment of dyslipidemia associated with type 2 diabetes. *Arch Intern Med* 2002; 162:1568.

¹⁴⁴ Bruckert E, Labreuche J, Amarenco P. Meta-analysis of the effect of nicotinic acid alone or in combination on cardiovascular events and atherosclerosis. *Atherosclerosis*. 2009 Dec 21.

¹⁴⁵ Paolini JF, et al. Extended-release niacin/laropiprant: reducing niacin-induced flushing to better realize the benefit of niacin in improving cardiovascular risk factors. *Cardiol Clin*. 2008 Nov;26(4):547-60.

¹⁴⁶ Cowart K, Singleton J, Carris N W, Inclisiran for the Treatment of Hyperlipidemia and for Atherosclerotic Cardiovascular Disease Risk Reduction: A Narrative Review, *Clin Ther*. 2023 Nov;45(11):1099-1104. doi: 10.1016/j.clinthera.2023.06.011. Epub 2023 Jul 12.

¹⁴⁷ Hartley L, Dyakova M, Holmes J, et al. Yoga for the primary prevention of cardiovascular disease. *Cochrane Database Syst Rev*. 2014;(5):CD010072.

¹⁴⁸ Zhao W, Ju H, Zhu K, Meta-analysis of the intervention effects of tai chi on fasting blood glucose, blood pressure and triglyceride in middle-aged and elderly people, ging Male. 2024 Dec;27(1):2282977. doi: 10.1080/13685538.2023.2282977. Epub 2024 Jan 23.

¹⁴⁹ Chen, Y.F., et al., [Effects of electroacupuncture at "Fenglong" (ST 40) on formation of macrophage-derived foam cell and efflux of cholesterol in hyperlipidemia rats]. *Zhongguo Zhen Jiu*, 2014. 34(5): p. 475-9.

¹⁵⁰ Li, X., et al., Isolation of genes involved in the preventive effect of electroacupuncture at Fenglong acupoint (ST40) on hypercholesterolemia mice by suppression subtractive hybridization (SSH) combined with negative subtraction chain (NSC) technology. *Acupunct Electrother Res*, 2006. 31(3-4): p. 233-46.

¹⁵¹ Xie, J.P., et al., [Study on optimization parameters of electroacupuncture at Fenglong (ST 40) for adjusting blood lipids]. *Zhongguo Zhen Jiu*, 2007. 27(1): p. 39-43.

¹⁵² Xie, J.P., et al., [Multi-central randomized controlled study on electroacupuncture at Fenglong (ST 40) for regulating blood lipids]. *Zhongguo Zhen Jiu*, 2009. 29(5): p. 345-8.

¹⁵³ Wang, Q., H. Huang, and W. Yue, [Regulatory functions of electroacupuncture at fenglong (ST40) on blood lipids and hepatic ABCA1 and PPARalpha in hyperlipidemia rats]. *Zhongguo Zhong Xi Yi Jie He Za Zhi*, 2012. 32(9): p. 1245-8.

¹⁵⁴ Zhang, H.X., et al., [Effect of electroacupuncture at "Fenglong" (ST 40) on rats with hyperlipidemia and its mechanism]. *Zhongguo Zhen Jiu*, 2012. 32(3): p. 241-5.

¹⁵⁵ Zhang, H.X., et al., [Effects of electroacupuncture stimulation of "Fenglong" (ST 40) on expression of liver ATP-binding cassette transporter A 1 mRNA and protein in rats with hyperlipidemia]. *Zhen Ci Yan Jiu*, 2013. 38(2): p. 100-5.

¹⁵⁶ Xie, J.P., et al., [Multi-central randomized controlled study on electroacupuncture at Fenglong (ST 40) for regulating blood lipids]. *Zhongguo Zhen Jiu*, 2009. 29(5): p. 345-8.

¹⁵⁷ Ye, X. and H. Zhang, *Influence of moxibustion temperatures on blood lipids, endothelin-1, and nitric oxide in hyperlipidemia patients*. *J Tradit Chin Med*, 2013. 33(5): p. 592-6.

¹⁵⁸ Kerksuppaphol, L. and S. Kerksuppaphol, *A randomized controlled trial of electroacupuncture at body acupoints and Fenglong for regulating serum lipids in dyslipidemic patients in Thailand*. Complement Ther Clin Pract, 2014. 20(1): p. 26-31.

¹⁵⁹ Cabioglu, M.T. and N. Ergene, *Electroacupuncture therapy for weight loss reduces serum total cholesterol, triglycerides, and LDL cholesterol levels in obese women*. Am J Chin Med, 2005. 33(4): p. 525-533.

¹⁶⁰ Wu, B., Z.C. Liu, and B. Xu, *[Clinical observation on obesity and hyperlipidemia of liver qi stagnation and spleen deficiency pattern in female patients treated with combined therapy of acupuncture and tapping method]*. Zhongguo Zhen Jiu, 2014. 34(12): p. 1151-5.

¹⁶¹ Sun, Y.Z. and J. Song, *[Clinical trials for treatment of primary hyperlipidemia by using acupuncture in combination with Lipitor]*. Zhen Ci Yan Jiu, 2015. 40(1): p. 61-4.

²⁷² Stone NJ, Robinson JG, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. *J Am Coll Cardiol*. 2014;63(25 Pt B):2889-934.