

Chronic Low Back Pain

Diagnosis/Condition:	Low back pain Lumbago Backache, unspecified Lumbosacral sprains and strains Lumbar sprain/strain
Discipline:	Integrated
ICD-10 Codes:	M54.5, M54.89, M54.9, S33.8XXA, S33.5XXA
Origination Date:	2006
Review/Revised Date:	07/2025
Next Review Date:	07/2027

Back problems rank among the second or third most common condition presenting to primary care physicians. Lower back pain in general is one of the most common condition that prompts patients to seek help from Integrative Health (IH) providers.¹ While not life-threatening, and often self-limiting, low back pain can also cause considerable disability.^{2,4,5} There is a 60-80% lifetime prevalence of nonspecific lower back pain (LBP).³ However some estimate that only about 25% of persons with LBP actually seek care from a professional.⁴

The World Health Organizations (WHO) June 2023 Low Back Pain paper states; Low back pain (LBP) has the highest prevalence globally among musculoskeletal conditions. An estimated 619 million people live with LBP, and it is the leading cause of disability worldwide. It is a major public health issue and is often associated with loss of work productivity and thus produces huge economic burden on individuals and on societies. Considering the high prevalence, LBP should be considered a global public health problem that requires an appropriate response.

According to the National Institute of Health approximately 26% of adults in the US experience low back pain at any given time. Estimates of the one-year incidence of a first-ever episode of low back pain range between 6.3% and 15.4%. Recurrence of LBP is common with estimates of recurrence within 1 year vary from 24% to 80% of LBP patients. Over a lifetime, LBP is most frequently experienced beginning in the third decade and is increasingly frequent until age 60-65 at which point LBP frequency gradually declines.⁵ This is consistent with models of the degenerative cascade in the lumbar spine.

Clinical classification of LBP is not standardized in the literature.⁶ For example, ICD-10 CM notes a number of “Approximate Synonyms” for LBP including acute, chronic, in pregnancy, without radiculopathy, and mechanical. This list in part suggests that a taxonomy of “low back pain” includes a wide range of clinical presentations. Identification of the pathoanatomical correlates of LBP vary widely. Joint dysfunction, intersegmental fixation, subluxation, sprain and strain, arthritis are just some of the explanations offered. Often there is no anatomical or pathological origin, so by default LBP is classified as “mechanical” or “non-specific” low back pain.

LBP is frequently cited as being “self-limiting” and that the vast majority of persons with LBP recover fully and the majority do so without seeking medical care. However, once the person seeks care, becomes a “patient”, the course of LBP to full recovery is less clear

Terminology around the time course of LBP is not completely definitive. “Acute” LBP is usually considered for symptoms in the first month. “Subacute” LBP refers to persistent symptoms in a 1–3 month time frame. Beyond 3 months LBP is usually considered chronic. The transition from the acute to the subacute stage is not well defined, however it is of clinical importance to prevent the development of chronic symptoms and disability. Many factors are associated with the transition of acute LBP to more persistent symptoms

However, the actual time-sequence in chronic LBP is variable. Waxing and waning of symptoms of variable intensity and disability over time is common. Recurrent episodes are recognized as lasting more than 24 hours, preceded, and separated by a period of at least 1 month without LBP and having at least 2 episodes of LBP in the past 12 months.⁷ Chronic LBP has been defined as pain persisting at least 3 months and/or present at least half of the days in the last 6 months, where patients can still function at work, school, home, and socially. Chronic pain can be characterized further as “high impact chronic LBP” when the pain is accompanied by at least one major activity restriction of activity such as work, school, or household tasks.⁸

While the understanding of the causes of LBP have improved^{9,10} and evidence for conventional and integrative healthcare (IH) treatments accumulate,^{11,12,13} precise diagnosis and definitive treatment remain elusive. The most current guideline, developed by the American College of Physicians in 2017, recommends nonpharmacologic treatments (e.g., acupuncture, multidisciplinary rehabilitation, or spinal manipulation) as the first line of treatment.¹⁴

The treatment of chronic pain, much like cLBP, advocates for an interdisciplinary approach to mitigate symptoms, decrease healthcare visits, and increase patient function.^{15,16} In support of this recommendation, an analysis of US National Health data cohort trial found suggests that use of IH (CIH, e.g., acupuncture, Chiropractic, massage) was associated with overall lower health care expenditures among adults with cLBP; this was “driven primarily by lower prescription and outpatient expenditures”.¹⁷

It is estimated that over 40% of patients with LBP use some form of IH and many report a great benefit.¹⁸ It is crucial that medical providers and policymakers are prepared to discuss a range of IH treatments and be prepared to communicate and use these treatments safely and effectively.¹⁹

A recent analysis of US insurance data (~6.8million claims) reveals a meager ~2.5% of patients with cLBP use acupuncture.²⁰

Subjective Findings and History

- Low Back Pain (LBP) is defined as pain inferior to the costal margin and superior to the inferior gluteal folds, with or without sciatica.
- Complete medical history and review of systems to assess for risk factors (see below) and possible underlying serious disease (e.g., cauda equina syndrome, fracture, cancer/metastases, infection).
- History of current onset, prior episode(s), prior treatment, and treatment response. Timing and duration of episodes i.e., first episode, recurrence, chronic, or high impact chronic.
- Pain characteristics include more precise identification of location (e.g., spinal level, laterality), intensity, exacerbating/palliating factors, and radiation of pain or sensory changes. LBP is sometimes accompanied by leg pain due to referred pain.
- Risk factors include: ^{21,22}
 - Smoking, obesity, genetic factors.
 - Older age, female gender, socioeconomic factors.
 - Physically strenuous work, sedentary work, psychologically strenuous work, job dissatisfaction.
 - Lack of exercise.
 - Psychological factors (fear avoidance behaviors, somatization disorder, anxiety, and depression).
 - Lifestyle and physical workload factors.

Traditional Chinese Medicine Syndrome Differentiation

From the perspective of TCM, low back pain has three primary etiological factors, each with unique pattern diagnoses: 1) external pathogens (e.g., wind-damp-cold); 2) internal disharmony (e.g., kidney Qi deficiency); or, 3) trauma (e.g. Qi & blood stagnation).^{23,24} To understand these concepts it is imperative to understand '*syndrome differentiation*,' a theoretical construct that defines the TCM system of healthcare. Multiple syndromes can present at the same time. In essence, this means for each medical condition (such as chronic LBP) practitioners are trained to determine with what pattern patients' present. Based on this *pattern* (e.g., blockage of *Qi*, or a lack of kidney *Qi*), individualized treatments are created to maximize benefit.

Objective Findings

- Postural evaluation may reveal: Decrease of normal spinal curvature, and/or present with antalgic list (forward, laterally).
- Decrease/loss of normal spinal ROM.
- Palpation may include segmental joint dysfunction/subluxation, tenderness over involved tissues, muscle spasm or tautness, myofascial trigger points, and tenderness of acupuncture points.
- Orthopedic and neurological examination directed at differentiating neurogenic from other sources of pain.²⁵ These may include absence of nerve compression signs and provocative orthopedic tests that reproduce the pain (e.g., straight leg raise and other tests that cause spinal motion may increase back pain).
- Evaluation of peripheral pulses to rule out vascular claudication.

- Evaluate functional capacity using appropriate physical examinations (e.g., ROM) and self-reports (e.g., MYMOPS, functional rating index, etc.).
- Routine diagnostic imaging (CXR, CT, MRI) is not recommended in the absence of red flags during the first 6 weeks after onset.²⁶ Imaging may be indicated depending on age, history of prior episodes and signs of underlying systemic disease. Correlation of diagnostic imaging findings and the cause of low back pain remain weak.²⁷ Imaging may be appropriate if the patient has progressive neurologic deficits or signs or symptoms that suggest a serious underlying condition (after 4-6 weeks).²⁸

Assessment

- Assess for “red flags” (refer to Heraya’s Orthopedic Red Flags pathway).
- Only about 0.7% of patients with low back pain in primary care settings have metastatic cancer, 0.01% have spinal infection, and 0.04% have the cauda equina syndrome. Vertebral compression fractures (4%) and inflammatory back disease (≤5%) may also cause back pain, but these conditions typically carry lower diagnostic urgency.^{29,30,31}
- Assess for “yellow flags”. Identify factors that may be obstacles to recovery or promote prolonged disability^{32,33} Use the Keele STarT Back Screening Tool.³⁴
- Clinical prediction rules may assist in forming a prognosis.
- Nonorganic signs (Waddell's signs) — psychological distress may amplify low back symptoms and may be associated with anatomically “inappropriate” physical signs.^{35,36,37}
- The clinical impression should indicate the specific anatomical structures and acupuncture channels involved, and clinically correlate them with the mechanism of injury, history, subjective complaints, and objective findings.
- Diagnoses can include mechanical or non-specific, spondylosis, spondylolisthesis, anterolisthesis, retrolisthesis, spondylolysis, spinal stenosis, lordosis, kyphosis, scoliosis, neurogenic claudication, radiculopathy, sciatica, cauda equina syndrome, neoplasm, infection, and inflammation.³⁸

Plan

The trajectory from acute through to chronic LBP is highly variable and individual to each patient.³⁹ The plan of care must be appropriate for the clinical circumstances, i.e., first onset of acute LBP, subacute, recurrent, chronic, or high impact chronic LBP.

Mind-Body therapies:

- Behavioral therapy (Operant, Cognitive, Respondent).^{40,41,42,43}
- Meditation: A 2023 systematic review (SR, n=12) suggests promising results, “*with regard to reducing short-term pain intensity in patients with LBP*.⁴⁴
- Mindfulness-based stress reduction.⁴⁵ A 2024 SR (n=18) cautiously suggest positive effects of Mindfulness-based interventions in reducing pain intensity.⁴⁶
- Findings indicate that virtual reality-based training can be used effectively for individuals with chronic low back pain in the immediate term, especially to reduce pain, alleviate pain-related fear, and improve disability.⁴⁷

Diet modification:

- Anti-inflammatory diets.

Herbal Medicine (Western):

- Harpagophytum. procumbens (Devil's claw), Salix. alba (white willow), C. frutescens^{48,49,50,51}, Symphytum officinale L. (comfrey), Solidago chilensis (Brazilian arnica), curcumin, and lavender essential oil.⁵²

Homeopathy:

- Arnica, Rhus tox, Rumex, Mag phos, Calc fluor, Bryonia, et al as indicated for symptomatic treatment.

Supplements and Nutrients:

- Oral and intramuscular magnesium for muscle spasm, Proteolytic enzymes for inflammation including bromelain. L-serine (594 mg) and EPA 149 mg) were effective in an RCT in 2020 in reducing LBP over a few weeks.⁵³

Acupuncture:

- Over 100 RCTs have been conducted on the benefits of acupuncture for the treatment of cLBP. With the exception of 5 recent and/or small trials (all n<150),^{54,55,56,57,58} the RCTs have been summarized in several systematic reviews and meta-analyses. The most current policy guidelines from the WHO, American College of Physicians & VA/DoD, take a similar approach and suggest the inclusion of acupuncture as part of a multidisciplinary approach as a first-line treatment option.^{59,60,61} These recommendations are bolstered when viewed through the US policy change when in 2020 Center for Medicare Services opted to cover acupuncture (12-20 treatments) for Medicare patients with cLBP.⁶²
- The evidence supports the benefit of acupuncture for the treatment of chronic low back pain.
 - The most recent systematic reviews (2008-2022) conclude that acupuncture is beneficial as adjunctive treatment to usual care.^{63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78}
- The evidence supports the cost-effectiveness of acupuncture for the treatment of low back pain.
 - A systematic review and meta-analysis (2014) concluded that acupuncture is cost-effective when included in addition to usual care.⁷⁹
 - This is supported by two earlier large pragmatic trials.^{80,81}
- Tai Chi/Qi gong
 - A 2019 systematic review (n=11) cautiously suggests that either Tai Chi or Qi gong, "may have a positive effect on modulating pain intensity [and disability]...".
 - A 2019 systematic review (n=10) cautiously suggests, "Tai Chi alone or as additional therapy with routine PT may decrease pain and improve...disability..."⁸²
- Dry needling is an effective procedure for the treatment of myofascial pain in patients with acute and chronic low back pain.⁸³

Manual Adjustments/Manipulation:

- Spinal manipulation/chiropractic combined with other therapies^{84,,85,86,87,88,89}
 - A systematic review and meta-analysis published in 2018 showed that there is moderate-quality evidence indicating “manipulation and mobilization are likely to reduce pain and improve function for patients with chronic low back pain. Manipulation appears to produce a larger effect than mobilization.”⁹⁰ They concluded that multimodal programs may be a promising consideration for treatment.
 - Another study found use of prescription opioids was lower in a population of patients receiving chiropractic care.⁹¹

Immobilization/Bracing/Taping:

- Braces and supports.
- Shoe orthotics.⁹²

Physical Modalities (Western):

- Wet cupping.⁹³
- Prolotherapy.^{94,95}
- Low level laser therapy.^{96,97}
- Massage therapy.^{98,99}
- A systematic review and meta-analysis (n=632) found that Extracorporeal shock wave therapy (ESWT) provided better pain relief and improved lumbar dysfunction compared with the other interventions included, and no serious adverse effects were found.¹⁰⁰

Pharmaceuticals (OTC):

- OTC and botanical analgesics.
- NSAIDS: They appear slightly more effective than placebo for short term pain reduction and disability in acute LBP in systematic review in 2020, but the difference is likely not clinically relevant.¹⁰¹
 - The most recent guidelines, from the American College of Physicians (ACP; 2017) and VA/DoD (2023), recommend nonpharmacologic options (e.g. acupuncture, multidisciplinary rehabilitation, or spinal manipulation) as the first-line of treatment.^{102,103} If there is an inadequate response to nonpharmacologic therapy, then second-line options include: NSAIDs.

Pharmaceuticals (Prescription):

- Steroids when appropriate.
- Various opioids.
 - According to systematic review, may provide safe and clinically relevant pain relief for acute LBP 4-15 weeks in highly selected patients.¹⁰⁴ Evidence lacking for long term results.^{105,106}

Movement and Exercise:

- Isolated lumbar extension resistance training.¹⁰⁷
- Based on the results of the present meta-analysis, pelvic floor muscle-strengthening exercises significantly reduce the low back pain intensity.¹⁰⁸
- Compared with conventional rehabilitation and no intervention provided, tai chi, yoga, pilates exercise, sling exercise, motor control exercise, and core or stabilization exercises significantly improved CLBP in patients.¹⁰⁹
- Segmental stabilization exercises (SSEs) and stretching of trunk and hamstrings muscles improved pain and reduced disability.¹¹⁰
- Pilates exercise can decrease LBP compared to no exercise and non-specific exercise.¹¹¹
- Avoidance of inciting activities, avoid bed rest.
- Ice/heat application at home.

Length of Treatment

- Evaluate progress on an on-going basis.
- Risk factors for chronicity: Significant trauma, co-morbidity (degenerative disc disease, spondylolisthesis, segmental instability, osteoporosis, spine deformity), obesity, age, socio-economic factors.
- Patients with high expectations of recovery have better outcomes.¹¹²

Outcome Assessment Tools

- Visual analog and numeric pain rating scale (VAS, NRS).
- Oswestry low back pain disability index.
<https://eprovide.mapi-trust.org/> (A free account is required for download).
- Patient specific functional scale.
- Measure Yourself Medical Outcome Profile (Mymops).
<http://www.bris.ac.uk/primaryhealthcare/resources/mymop/>
- Keele_STarT_Back, Brief Pain Inventory, Pain Catastrophizing Scale: Psychosocial variable are also strong predictors of outcomes (maladaptive pain coping behaviors, functional impairment, poor general health status, presence of psychiatric comorbidities, or nonorganic signs).¹¹³

Referral Criteria

- “Red flags” of serious disease (see Heraya’s Red Flag Advisory).
- Referral to an appropriate specialist may be appropriate after 4-6 weeks of care without symptomatic or functional improvement or upon onset of (progressive) neurologic deficit.

Resources for Clinicians

NASS North American Spine Society (NASS) Clinical Guideline for the Diagnosis and Treatment of Low Back Pain. NASS 2020

<https://www.spine.org/Portals/0/assets/downloads/ResearchClinicalCare/Guidelines/LowBackPain.pdf>

Qaseem A, Wilt TJ, Mclean RM, Forciea MA. Noninvasive Treatments for Acute, Subacute, and Chronic Low Back Pain: A Clinical Practice Guideline From the American College of Physicians. *Ann Intern Med.* 2017;166(7):514-530.

Globe G, Farabaugh RJ, Hawk C, et al. Clinical Practice Guideline: Chiropractic Care for Low Back Pain. *J Manipulative Physiol Ther.* 2016 Jan;39(1):1-22.

Society for Acupuncture Research. Acupuncture for the Treatment of Low Back Pain: An Evidence-Based Assessment. Revised July 2021 www.AcupunctureResearch.org.

Wong JJ, Côté P, Sutton DA, et al. Clinical practice guidelines for the noninvasive management of low back pain: A systematic review by the Ontario Protocol for Traffic Injury Management (OPTIMa) Collaboration. *Eur J Pain.* 2017;21(2):201-216.

Resources for Patients

American Academy of Family Physicians. FamilyDoctor.org. "Low Back Pain".

<http://familydoctor.org/familydoctor/en/diseases-conditions/low-back-pain.printerview.all.html>

National Institute of Arthritis and Musculoskeletal and Skin Diseases. "What is back pain?"

http://www.niams.nih.gov/Health_Info/Back_Pain/back_pain_ff.asp

Clinical Pathway Feedback

Heraya desires to keep our clinical pathways customarily updated. If you wish to provide additional input, please use the e-mail address listed below and identify which clinical pathway you are referencing. Thank you for taking the time to give us your comments.

Clinical Services Department: cs@herayahealth.com

Disclaimer Notice

Heraya clinical pathways are a resource to assist clinicians and are not intended to be nor should they be construed/used as medical advice. The pathways contain information that may be helpful for clinicians and their patients to make informed clinical decisions, but they cannot account for all clinical circumstances. Each patient presents with specific clinical circumstances and values requiring individualized care which may warrant adaptation from the pathway. Treatment decisions are made collaboratively by patients and their practitioner after an assessment of the clinical condition, consideration of options for treatment, any material risk, and an opportunity for the patient to ask any questions.

Heraya makes no representation and accepts no liability with respect to the content of any external information cited or relied upon in the pathways. The presence of a particular procedure or treatment modality in a clinical pathway does not constitute a representation or warranty that this service is covered by a patient's benefit plan. The patient's benefit plan determines coverage.

¹ Barnes PM, Bloom B, Nahin R. *CDC National Health Statistics Report #12. Complementary and Alternative Medicine Use Among Adults and Children: United States, 2007*. December 2008.

² van Kleef M, Vanelderen P, Cohen SP, Lataster A, Van Zundert J, Mekhail N.; Pain originating from the lumbar facet joints. *Pain Pract*. 2010 Sep-Oct;10(5):459-69.

³ Becker JA, Stumbo JR. Back Pain in Adults. *Prim Care*. 2013 Jun;40(2):271-88.

⁴ Côté, Pierre, et al. "The Treatment of Neck and Low Back Pain: Who Seeks Care? Who Goes Where?" *Medical Care*, vol. 39, no. 9, 2001, pp. 956–967. *JSTOR*, www.jstor.org/stable/3767775.

⁵ Hoy, Damian & Brooks, P & Blyth, F & Buchbinder, Rachelle. (2010). The Epidemiology of low back pain. Best practice & research. *Clinical rheumatology*. 24. 769-81. 10.1016/j.berh.2010.10.002.

⁶ Green BN, Johnson CD, Haldeman S, Griffith E, Clay MB, Kane EJ, et al. (2018) A scopingreview of biopsychosocial risk factors and co-morbidities for common spinal disorders. *PLoS ONE* 13(6): e0197987. <https://doi.org/10.1371/journal.pone.0197987>

⁷ Stanton TR, Latimer J, Maher CG, Hancock MJ. How do we define the condition 'recurrent low back pain'? A systematic review. *Eur Spine J*. 2009;19(4):533-9.

⁸ Von Korff, M., Scher, A. I., Helmick, C., Carter-Pokras, O., Dodick, D. W., Goulet, J., ... Mackey, S. (Accepted/In press). United States National Pain Strategy for Population Research: Concepts, Definitions, and Pilot Data. *Journal of Pain*. <https://doi.org/10.1016/j.jpain.2016.06.009>

⁹ Beresford ZM, Kendall RW, Willick SE. Lumbar facet syndromes. *Curr Sports Med Rep*. 2010 Jan-Feb;9(1):50-6.

¹⁰ Lu D, Le P, Davidson B, Zhou BH, Lu Y, Patel V, Solomonow M. Frequency of cyclic lumbar loading is a risk factor for cumulative trauma disorder. *Muscle Nerve*. 2008 Jul;38(1):867-74.

¹¹ Roy R, Boucher J, Comtois A. Inflammatory response following a short-term course of chiropractic treatment in subjects with and without chronic low back pain. *Journal of Chiropractic Medicine* [serial online]. September 2010;9(3):107-114.

¹² Padayachy K, Vawda G, Shaik J, McCarthy P. The immediate effect of low back manipulation on serum cortisol levels in adult males with mechanical low back pain. *Clinical Chiropractic* [serial online]. December 2010;13(4):246-252.

¹³ Fritz JM, et al. Preliminary investigation of the mechanisms underlying the effects of manipulation: exploration of a multi-variate model including spinal stiffness, multifidus recruitment, and clinical findings. *Spine* (Phila Pa 1976). 2011 Feb 25.

¹⁴ Qaseem A, Wilt TJ, McLean RM, Forciea MA, Clinical Guidelines Committee of the American College of P. Noninvasive Treatments for Acute, Subacute, and Chronic Low Back Pain: A Clinical Practice Guideline From the American College of Physicians. *Ann Intern Med*. 2017;166(7):514-30.

¹⁵ Grabois, M., Management of chronic low back pain. *Am J Phys Med Rehabil*, 2005. 84(3 Suppl): p. S29-S41.

¹⁶ Qaseem, A., et al., Noninvasive Treatments for Acute, Subacute, and Chronic Low Back Pain: A Clinical Practice Guideline From the American College of Physicians. *Ann Intern Med*, 2017. 166(7): p. 514-530.

¹⁷ Olaisen, R.H., Associations Between Complementary and Alternative Medicine and Health Care Expenditures Among Adults With Chronic Back Pain. *Med Care*, 2020. 58(8): p. 689-695.

¹⁸ Ghildayal N, Johnson PJ, Evans RL, Kreitzer MJ. Complementary and Alternative Medicine Use in the US Adult Low Back Pain Population. *Glob Adv Health Med*. 2016;5(1):69-78.

¹⁹ Murthy V, Sibbitt DW, Adams J. An integrative review of complementary and alternative medicine use for back pain: a focus on prevalence, reasons for use, influential factors, self-perceived effectiveness, and communication. *Spine J*. 2015 Aug 1;15(8):1870-83. Epub 2015 May 9.

²⁰ Candon, M., et al., Utilization of Reimbursed Acupuncture Therapy for Low Back Pain. *JAMA Netw Open*, 2024. 7(8): p. e2430906.

²¹ Parreira P, Maher CG, Steffens D, Hancock MJ, Ferreira ML (2018) Risk factors for low back pain and sciatica. *The Spine Journal*, Vol. 118, issue 9, 2018, pp. 1715-1721

²² Rahman S, et.al. Risk factors for low back pain: A population based longitudinal study. *Arthritis Care and Research*, 2019, Feb;71(2), pp 290-299.

²³ Wu Y, Fisher W. Practical Therapeutics of Traditional Chinese Medicine. 1997:265-271 CY - Brookline.

²⁴ Maciocia G. The Practice of Chinese Medicine. 1994.

²⁵ De Luigi AJ, Fitzpatrick KF. Physical examination in radiculopathy. *Phys Med Rehabil Clin N Am*. 2011 Feb; 22(1): 7 -40.

²⁶ American Chiro[practice Association Choosing Wisely]. http://www.choosingwisely.org/clinician-lists/#keyword=back_pain

²⁷ Endean A, Palmer KT, Coggon D. Potential of magnetic resonance imaging findings to refine case definition for mechanical low back pain in epidemiological studies: a systematic review. *Spine*. 2011; 36(2):160 -9.

²⁸ Chou R, Fu R, Carrino JA, Deyo RA. Imaging strategies for low-back pain: systematic review and meta-analysis. *Lancet*. 2009 Feb 7;373(9662):463-72.

²⁹ Deyo RA, Rainville J, Kent DL. What can the history and physical examination tell us about low back pain? *JAMA* 1992 268-760-5

³⁰ Jarvik J.G., Deyo R.A. Diagnostic evaluation of low back pain with emphasis on imaging (2002) *Annals of Internal Medicine*, 137 (7) , pp. 586-597.

³¹ Underwood MR, [Dawes P](#). Inflammatory back pain in primary care. *Br J Rheumatol*. 1995 Nov;34(11):1074-7.

³² Sharma R, Haas M, Stano M, Spegman A, Gehring R. Determinants of costs and pain improvement for medical and chiropractic care of low back pain. *Journal of Manipulative & Physiological Therapeutics* [serial online]. May 2009;32(4):252-261.

³³ Field JR, Newell D, McCarthy PW. Preliminary study into the components of the fear-avoidance model of LBP: change after an initial chiropractic visit and influence on outcome. *Chiropr Osteopat*. 2010 Jul 30;18:21.

³⁴ Robinson HS, Dagfinrud H. Reliability and screening ability of the StarT Back screening tool in patients with low back pain in physiotherapy practice, a cohort study. *BMC Musculoskelet Disord*. 2017;18(1):232. Published 2017 May 31. doi:10.1186/s12891-017-1553-x

³⁵ Fishbain DA, Cutler RB, Rosomoff HL, Rosomoff RS. Is there a relationship between nonorganic physical findings (addell signs) and secondary gain/malingering? *Clin J Pain* 2004; 20:399.

³⁶ Coan RM, Wong G, Ku SL. The acupuncture treatment of low back pain: a randomized controlled study. *Am J Chin Med*. 1980; 8:181-189.

³⁷ Fishbain DA, Cole B, Cutler RB, et al. A structured evidence-based review on the meaning of nonorganic physical signs: Waddell signs. *Pain Med* 2003; 4:141.

³⁸ Wheeler SG, Wipf JE, Staiger TO, & Deyo RA. (2010). Approach to the diagnosis and evaluation of low back pain in adults. In S. J. Atlas (Ed.), *UpToDate* (Vol. 18). Alphenan der Rhein: Wolter Kluver. Table 1.

³⁹ Axen I, Leboeuf-Yde C. Trajectories of low back pain. *Best Pract. Res. Clin. Rheumatol*. 2013;27:601–612. doi: 10.1016/j.berh.2013.10.004.

⁴⁰ Henschke N, Ostelo RWJG, van Tulder MW et al. Behavioural treatment for chronic low-back pain. *Cochrane Database Syst Rev* (7) (2010).

⁴¹ Ostelo RW, van Tulder MW, Vlaeyen JWS et al. Behavioural treatment for chronic low-back pain. *Cochrane Database Syst Rev* (1) (2005).

⁴² Linton SJ, Bradley LA, Jensen I et al. The secondary prevention of low back pain: a controlled study with follow-up. *Pain*. 1989; 36:197–207.

⁴³ Marlowe D. Complementary and alternative medicine treatments for low back pain. *Prim Care*. 2012 Sep;39(3):533-46.

⁴⁴ Schmidt, H. and C. Pilat, Effects of meditation on pain intensity, physical function, quality of life and depression in adults with low back pain - A systematic review with meta-analysis. *Complement Ther Med*, 2023. 72: p. 102924.

⁴⁵ Chou R, Deyo R, Friedly J, et al. Nonpharmacologic Therapies for Low Back Pain: A Systematic Review for an American College of Physicians Clinical Practice Guideline. *Ann Intern Med*. 2017;166(7):493-505.

⁴⁶ Paschali, M., et al., Mindfulness-based Interventions for Chronic Low Back Pain: A Systematic Review and Meta-analysis. *Clin J Pain*, 2024. 40(2): p. 105-113.

⁴⁷ Li R, Li Y, Kong Y, Li H, Hu D, Fu C, Wei Q, Virtual Reality-Based Training in Chronic Low Back Pain: Systematic Review and Meta-Analysis of Randomized Controlled Trials. *J Med Internet Res*. 2024 Feb 26;26:e45406. doi: 10.2196/45406.

⁴⁸ S Chrubasik, CH Zimpfer, U Schutt et al. Effectiveness of *Harpagophytum procumbens* in the treatment of acute low back pain. *Phytomedicine*. 1996; 3: 1–10.

⁴⁹ Chrubasik S, Eisenberg E, Balan E. Treatment of low back pain in exacerbation with willow bark extract: a randomized double-blind study. *Am J Med*, 109 (2000); 9-14.

⁵⁰ W Keitel, H Frerick, U Kun et al. Capsicum pain plaster in chronic nonspecific low back pain. *Arzneimittelforschung*, 2001; 51 (11): 896–903.

⁵¹ Frerick H, Keitel W, Kuhn U et al. Topical treatment of chronic low back pain with a capsicum plaster. *Pain*. 2003; 106: 59–64.

⁵² Gagnier JJ, Oltean H, Van tulder MW, Berman BM, Bombardier C, Robbins CB. Herbal Medicine for Low Back Pain: A Cochrane Review. *Spine*. 2016;41(2):116-33.

⁵³ L-Serine and EPA Relieve Chronic Low-Back and Knee Pain in Adults: A Randomized, Double-Blind, Placebo-Controlled Trial. Sasahara I, Yamamoto A, Takeshita M, Suga Y, Suzuki K, Nishikata N, Takada M, Hashimoto M, Mine T, Kobuna Y, Nagao K. *J Nutr*. 2020 Sep 1;150(9):2278-2286. doi: 10.1093/jn/nxaa156. PMID: 32520991 Clinical Trial.

⁵⁴ Torres, S.F., et al., Effect of Different Frequencies of Electroacupuncture on Chronic Low Back Pain in Older Adults: A Triple-blind, Placebo-controlled, Randomized Clinical Trial. *Pain Physician*, 2023. 26(2): p. 161-173.

⁵⁵ Liu, H., et al., Effect of trigger point acupuncture on pain and functional activity in patients with chronic non-specific low back pain: a randomised controlled trial. *Acupunct Med*, 2023. 41(3): p. 130-141.

⁵⁶ Minakawa, Y., et al., Trigger Point Acupuncture and Exercise for Chronic Low Back Pain in Older Adult: a Preliminary Randomized Clinical Trial. *J Acupunct Meridian Stud*, 2022. 15(2): p. 143-151.

⁵⁷ Namiranian, P., et al., Comparison of an Iranian Traditional Massage (Fateh Method) with Physiotherapy and Acupuncture for Patients with Chronic Low Back Pain: a Randomized Controlled Trial. *J Acupunct Meridian Stud*, 2022. 15(3): p. 163-173.

⁵⁸ Alrawaili, S.M., et al., Short-term effect of acupuncture dry needle in treatment of chronic mechanical low back pain: a randomized controlled clinical trial. *Eur Rev Med Pharmacol Sci*, 2024. 28(14): p. 3973-3981.

⁵⁹ Qaseem, A., et al., Noninvasive Treatments for Acute, Subacute, and Chronic Low Back Pain: A Clinical Practice Guideline From the American College of Physicians. *Ann Intern Med*, 2017. 166(7): p. 514-530.

⁶⁰ Buelt, A., S. McCall, and J. Coster, Management of Low Back Pain: Guidelines From the VA/DoD. *Am Fam Physician*, 2023. 107(4): p. 435-437.

⁶¹ WHO Guidelines Approved by the Guidelines Review Committee, in WHO guideline for non-surgical management of chronic primary low back pain in adults in primary and community care settings. 2023, World Health Organization

⁶² Liou, K.T., D. Korenstein, and J.J. Mao, Medicare Coverage of Acupuncture for Chronic Low Back Pain: Does It Move the Needle on the Opioid Crisis? *J Gen Intern Med*, 2021. 36(2): p. 527-529.

⁶³ Yuan, J., et al., Effectiveness of Acupuncture for Low Back Pain: A Systematic Review. *Spine*, 2008. 33(23): p. E887-E900.

⁶⁴ Trigkilidas, D., Acupuncture therapy for chronic lower back pain: a systematic review. *Ann R Coll Surg Engl*, 2010. 92(7): p. 595-8.

⁶⁵ Xu, M., et al., Acupuncture for chronic low back pain in long-term follow-up: a meta-analysis of 13 randomized controlled trials. *Am J Chin Med*, 2013. 41(1): p. 1-19.

⁶⁶ Hutchinson, A.J., et al., The effectiveness of acupuncture in treating chronic non-specific low back pain: a systematic review of the literature. *J Orthop Surg Res*, 2012. 7: p. 36.

⁶⁷ Taylor, P., et al., Cost-effectiveness of Acupuncture for Chronic Nonspecific Low Back Pain. *Pain Pract*, 2014. 14(7): p. 599-606.

⁶⁸ Asano, H., D. Plonka, and J. Weeger, Effectiveness of Acupuncture for Nonspecific Chronic Low Back Pain: A Systematic Review and Meta-Analysis. *Med Acupunct*, 2022. 34(2): p. 96-106.

⁶⁹ Yuan, J., et al., Effectiveness of Acupuncture for Low Back Pain: A Systematic Review. *Spine*, 2008. 33(23): p. E887-E900.

⁷⁰ Trigkilidas, D., Acupuncture therapy for chronic lower back pain: a systematic review. *Ann R Coll Surg Engl*, 2010. 92(7): p. 595-8.

⁷¹ Xu, M., et al., Acupuncture for chronic low back pain in long-term follow-up: a meta-analysis of 13 randomized controlled trials. *Am J Chin Med*, 2013. 41(1): p. 1-19.

⁷² Xu, M., et al., Acupuncture for chronic low back pain in long-term follow-up: a meta-analysis of 13 randomized controlled trials. *Am J Chin Med*, 2013. 41(1): p. 1-19.

⁷³ Hutchinson, A.J., et al., The effectiveness of acupuncture in treating chronic non-specific low back pain: a systematic review of the literature. *J Orthop Surg Res*, 2012. 7: p. 36.

⁷⁴ Asano, H., D. Plonka, and J. Weeger, Effectiveness of Acupuncture for Nonspecific Chronic Low Back Pain: A Systematic Review and Meta-Analysis. *Med Acupunct*, 2022. 34(2): p. 96-106.

⁷⁵ Yu, H., et al., Systematic Review to Inform a World Health Organization (WHO) Clinical Practice Guideline: Benefits and Harms of Needling Therapies for Chronic Primary Low Back Pain in Adults. *J Occup Rehabil*, 2023. 33(4): p. 661-672.

⁷⁶ Li, X., et al., Clinical efficacy of acupuncture therapy combined with core muscle exercises in treating patients with chronic nonspecific low back pain: a systematic review and meta-analysis of randomized controlled trials. *Front Med (Lausanne)*, 2024. 11: p. 1372748.

⁷⁷ Giovanardi, C.M., et al., Acupuncture as an alternative or in addition to conventional treatment for chronic non-specific low back pain: A systematic review and meta-analysis. *Integr Med Res*, 2023. 12(3): p. 100972.

⁷⁸ Wu, M., et al., The Effectiveness of Acupuncture for Low Back Pain: An Umbrella Review and Meta-Analysis. *Am J Chin Med*, 2024. 52(4): p. 905-923.

⁷⁹ Taylor, P., et al., Cost-effectiveness of Acupuncture for Chronic Nonspecific Low Back Pain. *Pain Pract*, 2014. 14(7): p. 599-606.

⁸⁰ Thomas, K.J., et al., Longer term clinical and economic benefits of offering acupuncture care to patients with chronic low back pain. *Health Technol Assess*, 2005. 9(32): p. iii-iv, ix-x, 1-109.

⁸¹ Witt, C.M., et al., Pragmatic randomized trial evaluating the clinical and economic effectiveness of acupuncture for chronic low back pain. *Am J Epidemiol*, 2006. 164(5): p. 487-96.

⁸² Qin, J., et al., Effect of Tai Chi alone or as additional therapy on low back pain: Systematic review and meta-analysis of randomized controlled trials. *Medicine (Baltimore)*, 2019. 98(37): p. e17099.

⁸³ **Dach F, Ferreira KS**, Treating myofascial pain with dry needling: a systematic review for the best evidence-based practices in low back pain. *Arq Neuropsiquiatr*. 2023 Dec;81(12):1169-1178. doi: 10.1055/s-0043-1777731. Epub 2023 Dec 29.

⁸⁴ Wilkey A, Gregory M, Byfield D, McCarthy PW. A comparison between chiropractic management and pain clinic management for chronic low-back pain in a national health service outpatient clinic. *Journal of Alternative & Complementary Medicine*. 2008; 14(5):465-73.

⁸⁵ Peterson C, Bolton J, Humphreys B. Predictors of Improvement in Patients With Acute and Chronic Low Back Pain Undergoing Chiropractic Treatment. *Journal Of Manipulative & Physiological Therapeutics*. September 2012;35(7):525-533.

⁸⁶ Goertz C, Long C, Meeker W, et al. Adding chiropractic manipulative therapy to standard medical care for patients with acute low back pain: results of a pragmatic randomized comparative effectiveness study. *Spine*. April 15, 2013;38(8):627-634.

⁸⁷ Haas M, Vavrek D, Peterson D, Polissar N, Neradilek MB. Dose-response and efficacy of spinal manipulation for care of chronic low back pain: a randomized controlled trial. *Spine J*. 2014 Jul 1;14(7):1106-16. Epub 2013 Oct 16.

⁸⁸ Xia T, Long CR, Gudavalli MR, et al. Similar Effects of Thrust and Nonthrust Spinal Manipulation Found in Adults With Subacute and Chronic Low Back Pain: A Controlled Trial With Adaptive Allocation. *Spine (Phila Pa 1976)*. 2016 Jun;41(12):E702-9.

⁸⁹ Blanchette MA, Stockkendahl MJ, Borges da silva R, Boruff J, Harrison P, Bussières A. Effectiveness and Economic Evaluation of Chiropractic Care for the Treatment of Low Back Pain: A Systematic Review of Pragmatic Studies. *PLoS ONE*. 2016;11(8):e0160037.

⁹⁰ Coulter ID, Crawford C, Hurwitz EL, et al. Manipulation and mobilization for treating chronic low back pain: a systematic review and meta-analysis. *Spine J*. 2018; May 18(5):866-879

⁹¹ Whedon JM, Toler AWJ, Goehl JM, Kazal LA. Association Between Utilization of Chiropractic Services for Treatment of Low-Back Pain and Use of Prescription Opioids. *J Altern Complement Med*. 2018;24(6):552-556.

⁹² Saltychev M, Virolainen P. Interpreting the Results in Terms of Clinical Significance: Comment on "Shoe Orthotics for the Treatment of Chronic Low Back Pain: A Randomized Controlled Trial". *Arch Phys Med Rehabil*. 2018;99(7):1437-1438.

⁹³ Albedah A, Khalil M, Elolemy A, et al. The Use of Wet Cupping for Persistent Nonspecific Low Back Pain: Randomized Controlled Clinical Trial. *J Altern Complement Med*. 2015;21(8):504-8.

⁹⁴ RG Klein, BC Eek, WB DeLong et al. A randomized double-blind trial of dextrose-glycerine-phenol injections for chronic low back pain. *J Spinal Disord*. 1993; 6(1): 23-33.

⁹⁵ MJ Ongley, RG Klein, TA Dorman et al. A new approach to the management of low back pain. *Lancet*. 1987; 2 (8551); 143-146.

⁹⁶ **Xue-Qiang Wang** et al, Physical therapy for acute and sub-acute low back pain: A systematic review and expert consensus. *Clin Rehabil*. 2024 Jun;38(6):715-731. doi: 10.1177/02692155241229398. Epub 2024 Feb 5.

⁹⁷ Abdildin Y, Tapinova K, Jyenishkan N, Viderman, High-intensity laser therapy in low back pain management: a systematic review with meta-analysis. *Lasers Med Sci*. 2023 Jul 26;38(1):166. doi: 10.1007/s10103-023-03827-w.

⁹⁸ Cherkin DC, et al. A comparison of the effects of 2 types of massage and usual care on chronic low back pain: a randomized, controlled trial. *Ann Intern Med*. 2011 Jul 5;155(1):1-9.

⁹⁹ Kumar S, Beaton K, Hughes T. The effectiveness of massage therapy for the treatment of nonspecific low back pain: a systematic review of systematic reviews. *Int J Gen Med*. 2013;6:733-41.

¹⁰⁰ Liu K, Zhang Q, Chen L, Zhang H, Xu Z, Yuan Z, Dong J, Efficacy and safety of extracorporeal shockwave therapy in chronic low back pain: a systematic review and meta-analysis of 632 patients. *J Orthop Surg Res*. 2023 Jun 24;18(1):455. doi: 10.1186/s13018-023-03943-x.

¹⁰¹ van der Gaag WH, Roelofs PD, Enthoven WT, van Tulder MW, Koes BW Non-steroidal anti-inflammatory drugs for acute low back pain..*Cochrane Database Syst Rev*. 2020 Apr 16;4(4).

¹⁰² Qaseem, A., et al., Noninvasive Treatments for Acute, Subacute, and Chronic Low Back Pain: A Clinical Practice Guideline From the American College of Physicians. *Ann Intern Med*, 2017. 166(7): p. 514-530.

¹⁰³ Buelt, A., S. McCall, and J. Coster, Management of Low Back Pain: Guidelines From the VA/DoD. *Am Fam Physician*, 2023. 107(4): p. 435-437.

¹⁰⁴ Opioids for chronic low back pain: An updated systematic review and meta-analysis of efficacy, tolerability and safety in randomized placebo-controlled studies of at least 4 weeks of double-blind duration. Petzke F, Klose P, Welsch P, Sommer C, Häuser W. *Eur J Pain*. 2020 Mar;24(3):497-517. doi: 10.1002/ejp.1519. Epub 2019 Dec 27. PMID: 31823442

¹⁰⁵ Koes BW, Backes D, Bindels PJE. Pharmacotherapy for chronic non-specific low back pain: current and future options. *Expert Opin Pharmacother*. 2018;19(6):537-545.

¹⁰⁶ Bagg M, et al. Paracetamol, NSAIDS and opioid analgesics for chronic low back pain: a network meta-analysis. *Cochrane Review*. 2018. June

¹⁰⁷ Steele J, Bruce-Low S, Smith D, Jessop D, Osborne N. A Randomized Controlled Trial of the Effects of Isolated Lumbar Extension Exercise on Lumbar Kinematic Pattern Variability During Gait in Chronic Low Back Pain. *PM R*. 2016 Feb;8(2):105-14. Epub 2015 Jun 21.

¹⁰⁸ Kazeminia M, Rajati F, Rajati M, The effect of pelvic floor muscle-strengthening exercises on low back pain: a systematic review and meta-analysis on randomized clinical trials. *Neurol Sci*. 2023 Mar;44(3):859-872. doi: 10.1007/s10072-022-06430-z. Epub 2022 Oct 7.

¹⁰⁹ Li Y, Yan L, Hou L, Zhang X, Zhao H, Yan C, Li X, Li Y, Chen X, Ding X, Exercise intervention for patients with chronic low back pain: a systematic review and network meta-analysis. *Front Public Health*. 2023 Nov 17:11:1155225. doi: 10.3389/fpubh.2023.1155225. eCollection 2023.

¹¹⁰ França F, Burke T, Caffaro R, Ramos L, Marques A. Effects of Muscular Stretching and Segmental Stabilization on Functional Disability and Pain in Patients with Chronic Low Back Pain: A Randomized, Controlled Trial. *Journal Of Manipulative & Physiological Therapeutics*. May 2012;35(4):279-285.

¹¹¹ Patti A, Thornton JS, Giustino V, Drid P, Paoli A, Schulz JM, Palma A, Bianco A, Effectiveness of Pilates exercise on low back pain: a systematic review with meta-analysis. *Disabil Rehabil*. 2024 Aug;46(16):3535-3548. doi: 10.1080/09638288.2023.2251404. Epub 2023 Aug 26.

¹¹² Myers SS, Phillips RS, Davis RB, et al. Patient expectations as predictors of outcome in patients with acute low back pain. *J Gen Intern Med* 2008; 23:148.

¹¹³ Chou R, Shekelle P. Will this patient develop persistent disabling low back pain? *JAMA* 2010; 303:1295.